Tateyama-Ando Group
Laboratory for Chemistry and Life Science (CLS)
Tokyo Institute of Technology (Tokyo Tech)

論文リスト

2024

  1. Zizhen Zhou*, Huu Duc Luong, Bo Gao, Toshiyuki Momma, Yoshitaka Tateyama*, ACS Appl. Mater. Interfaces 16, 42093-42099 (2024). “LiNbO3 and LiTaO3 Coating Effects on the Interface of the LiCoO2 Cathode: A DFT Study of Li-Ion Transport” DOI: 10.1021/acsami.4c05737
  2. Seong-Hoon Jang*, Randy Jalem, Yoshitaka Tateyama, J. Mater. Chem. A 12, 20879-20886 (2024). “Computational discovery of stable Na-ion sulfide solid electrolytes with high conductivity at room temperature” DOI: 10.1039/d4ta02522a
  3. Qianli Si, Shoichi Matsuda, Youhei Yamaji, Toshiyuki Momma, Yoshitaka Tateyama*, Adv. Sci. (2024).”Data-Driven Cycle Life Prediction of Lithium Metal-Based Rechargeable Battery Based on Discharge/Charge Capacity and Relaxation Features” DOI: 10.1002/advs.202402608
  4. Itsuki Konuma, Naohiro Ikeda, Benoît D.L. Campéon, Hinata Fujimura, Jun Kikkawa, Huu Duc Luong, Yoshitaka Tateyama, Yosuke Ugata, Masao Yonemura, Toru Ishigaki, Taira Aida, Naoaki Yabuuchi*, Energy Storage Mater. 55, 103200 (2024). ” Unified understanding and mitigation of detrimental phase transition in cobalt-free LiNiO2″ DOI: 10.1016/j.ensm.2024.103200

2023

  1. Zizhen Zhou, Claudio Cazorla, Bo Gao, Huu Duc Luong, Toshiyuki Momma, Yoshitaka Tateyama*, ACS Appl. Mater. Interfaces  (2023). “First-Principles Study on the Interplay of Strain and State-of-Charge with Li-Ion Diffusion in the Battery Cathode Material LiCoO2” DOI: 10.1021/acsami.3c14444
  2. Wenchong Zhou, Chenchao Xu, Bo Gao, Masanobu Nakayama, Shunsuke Yagi, Yoshitaka Tateyama*, ACS Energy Lett. 8, 4113-4118 (2023). ” Glyme Solvent Decomposition on Spinel Cathode Surface in Magnesium Battery” DOI: 10.1021/acsenergylett.3c01084
  3. Randy Jalem*, Yoshitaka Tateyama, Kazunori Takada, Seong-Hoon Jang, J. Phys. Chem. C 127, 17307-17323 (2023). “Multi-objective solid electrolyte design of tetragonal and cubic inverse-perovskites for all-solid-state lithium-ion batteries by high-throughput DFT calculations and AI-driven methods” DOI: 10.1021/acs.jpcc.3c02801
  4. Masahito Ikeda, Randy Jalem*, Gen Hasegawa, Naoaki Kuwata, Qiumin Liu, Takafumi Yamamoto, Kei Shigematsu, Yoshitaka Tateyama, Masaki Azuma*, J. Phys. Chem. C 127, 14117-14124 (2023). “Theoretical Prediction and High-Pressure Synthesis of New LISICON-Type Solid-State Electrolyte Li2.75[B0.625P0.125S0.25]O3.375” DOI: 10.1021/acs.jpcc.3c02842
  5. Yoshitaka Tateyama*, Akiko Kagatsume, Masaru Yao, Shoichi Matsuda, Kohei Uosaki, J. Phys. Chem. C 127, 12867-12873 (2023). “Exploration of Organic Cathode Active Materials with High Energy Densities for Li-Ion Batteries via First-Principles Calculations” DOI: 10.1021/acs.jpcc.3c02131
  6. Seong-Hoon Jang*, Randy Jalem*, Yoshitaka Tateyama, J. Phys. Chem. A 127, 5734-5744 (2023). “EwaldSolidSolution: A High-Throughput Application to Quickly Sample Stable Site Arrangements for Ionic Solid Solutions” DOI: 10.1021/acs.jpca.3c00076
  7. Toshihiko Mandai*, Masaru Yao, Keitaro Sodeyama, Akiko Kagatsume, Yoshitaka Tateyama, Hiroaki Imai, J. Phys. Chem. C 127, 10419-10433 (2023). “Toward Improved Anodic Stability of Ether-Based Electrolytes for Rechargeable Magnesium Batteries” DOI: 10.1021/acs.jpcc.3c01452
  8. Ryoma Sasaki*, Bo Gao, Taro Hitosugi, Yoshitaka Tateyama*, npj Comput. Mater. 9, 48 (2023). “Nonequilibrium molecular dynamics for accelerated computation of ion–ion correlated conductivity beyond Nernst–Einstein limitation”
    DOI: 10.1038/s41524-023-00996-8
  9. Huu Duc Luong, Chenchao Xu, Randy Jalem, Yoshitaka Tateyama*, J. Power Sources 569, 232969 (2023). “Evaluation of battery positive-electrode performance with simultaneous ab-initio calculations of both electronic and ionic conductivities”
    DOI: 10.1016/j.jpowsour.2023.232969
  10. F.A. Vasquez, N.C. Rosero-Navarro*, R. Jalem*, A. Miura, Y. Goto, Y. Tateyama, J.A. Calderon*, K. Tadanaga, Appl. Mater. Today 30, 101697 (2023). “Microwave assisted preparation of LiFePO4/C coated LiMn1.6Ni0.4O4 for Li-ion batteries with superior electrochemical properties”
    DOI: 10.1016/j.apmt.2022.101697

2022

  1. Seong-Hoon Jang, Yoshitaka Tateyama, Randy Jalem*, Adv. Funct. Mater. 32, 2206036 (2022). “High-Throughput Data-Driven Prediction of Stable High-Performance Na-Ion Sulfide Solid Electrolytes”
    DOI: 10.1002/adfm.202206036
  2. Zizhen Zhou*, Dewei Chu, Bo Gao, Toshiyuki Momma, Yoshitaka Tateyama, Claudio Cazorla*, ACS Appl. Mater. Interfaces 14, 37009-37018 (2022). “Tuning the Electronic, Ion Transport, and Stability Properties of Li-rich Manganese-based Oxide Materials with Oxide Perovskite Coatings: A First-Principles Computational Study”
    DOI: 10.1021/acsami.2c07560
  3. Atsushi Ishikawa*, Fumiya Murase, Yoshitaka Tateyama, Junichiro Otomo*, ACS Omega 7, 26107-26115 (2022). “Favorable Role of the Metal–Support Perimeter Region in Electrochemical NH3 Synthesis: A Density Functional Theory Study on Ru/BaCeO3”
    DOI: 10.1021/acsomega.2c01222
  4. Bo Gao*, Randy Jalem, Yoshitaka Tateyama*, J. Mater. Chem. A, 10, 10083-10091 (2022). “Atomistic insight into the dopant impacts at the garnet Li7La3Zr2O12 solid electrolyte grain boundaries”
    DOI: 10.1039/d2ta00545j
  5. Shunsuke Muto*, Yuta Yamamoto, Miyuki Sakakura, Hong-Kang Tian, Yoshitaka Tateyama, Yasutoshi Iriyama, ACS Appl. Energy Mater. 5, 98–107 (2022). “STEM-EELS spectrum imaging of aerosol-deposited NASICON-type LATP solid electrolyte and LCO cathode interface”
    DOI: 10.1021/acsaem.1c02512
  6. Bo Gao*, Randy Jalem, Hong-Kang Tian, Yoshitaka Tateyama*, Adv. Energy Mater. 12, 2102151 (2022). “Revealing Atomic-Scale Ionic Stability and Transport around Grain Boundaries of Garnet Li7La3Zr2O12 Solid Electrolyte”
    DOI: 10.1002/aenm.202102151
  7. Randy Jalem*, Bo Gao, Hong-Kang Tian, Yoshitaka Tateyama*, J. Mater. Chem. A 10, 2235-2248 (2022). “Theoretical study on stability and ion transport property with halide doping of Na3SbS4 electrolyte for all-solid-state batteries” (Front Cover)
    DOI: 10.1039/D1TA07292G
  8. Shigeki Kawai*, Atsushi Ishikawa*, Shinichiro Ishida, Takuya Yamakado, Yujing Ma, Sun Kewei, Yoshitaka Tateyama, Rémy Pawlak, Ernst Meyer, Shohei Saito*, Atsuhiro Osuka, Angew. Chem. Int. Ed. 134, e202114697 (2022). “On-Surface Synthesis of Multi-Block Co-Oligomers by Defluorinative Coupling of CF3-Substituted Aromatic Systems”
    DOI: 10.1002/ange.202114697

2021

  1. Shogo Wakazaki, Qiumin Liu, Randy Jalem, Takumi Nishikubo, Yuki Sakai, Naoki Matsui, Guowei Zhao, Kota Suzuki, Kei Shigematsu, Takafumi Yamamoto, Ryoji Kanno, Hena Das, Yoshitaka Tateyama, and Masaki Azuma*, Chem. Mater. 33, 9194–9201 (2021). “High-Pressure Synthesis and Lithium-Ion Conduction of Li4OBr2 Derivatives with a Layered Inverse-Perovskite Structure”
    DOI: 10.1021/acs.chemmater.1c02713
  2. Shisheng Li, Yung-Chang Lin, Jinhua Hong, Bo Gao, Hong En Lim, Xu Yang, Yoshitaka Tateyama, Kazuhiro Tsukagoshi, Yoshiki Sakuma, Kazu Suenaga, Takaaki Taniguchi, Chem. Mater. 33, 7301-7308 (2021). “Mixed-Salt Enhanced Chemical Vapor Deposition of Two-Dimensional Transition Metal Dichalcogenides”
    DOI: 10.1021/acs.chemmater.1c01652
  3. Kazuhiro Nawa*, Yoshinori Imai, Youhei Yamaji, Hideyuki Fujihara, Wakana Yamada, Ryotaro Takahashi, Takumi Hiraoka, Masato Hagihala, Shuki Torii, Takuya Aoyama, Takamasa Ohashi, Yasuhiro Shimizu, Hirotada Gotou, Masayuki Itoh, Kenya Ohgushi, Taku J. Sato, J. Phys. Soc. Jpn. 90, 123703 (2021). “Strongly Electron-Correlated Semimetal RuI3 with a Layered Honeycomb Structure”
    DOI: 10.7566/JPSJ.90.123703
  4. Youhei Yamaji*,Teppei Yoshida,Atsushi Fujimori, Masatoshi Imada, Phys. Rev. Research 3, 04309 (2021). “Hidden self-energies as origin of cuprate superconductivity revealed by machine learning”
    DOI: 10.1103/PhysRevResearch.3.043099
    NIMS Press release
  5. Maxime Charlebois, Jean-Baptiste Morée, Kazuma Nakamura*, Yusuke Nomura, Terumasa Tadano, Yoshihide Yoshimoto, Youhei Yamaji, Takumi Hasegawa, Kazuyuki Matsuhira, Masatoshi Imada, Phys. Rev. B 104, 075153 (2021). Ab initio derivation of low-energy Hamiltonians for systems with strong spin-orbit interaction: Application to Ca5Ir3O12″
    DOI: 10.1103/PhysRevB.104.075153
  6. Francesca Celine I. Catalan, Le The Anh, Junepyo Oh, Emiko Kazuma, Norihiko Hayazawa, Norihito Ikemiya, Naoki Kamoshida, Yoshitaka Tateyama, Yasuaki Einaga, Yousoo Kim*, Adv. Mater. 33, 2103250 (2021). “Localized Graphitization on Diamond Surface as a Manifestation of Dopants”
    DOI: 10.1002/adma.202103250
  7. Toshihiko Mandai*, Yong Youn, Yoshitaka Tateyama, Mater. Adv. 2, 6283-6296 (2021). “Remarkable Electrochemical and Ion-Transport Characteristics of Magnesium-Fluorinated Alkoxyaluminate–Diglyme Electrolytes for Magnesium Batteries”
    DOI: 10.1039/D1MA00448D
  8. Le The Anh, Francesca Celine I. Catalan, Yousoo Kim, Yasuaki Einaga, Yoshitaka Tateyama*, Phys. Chem. Chem. Phys. 23, 15628-15634 (2021). “Boron position-dependent surface reconstruction and electronic states of boron-doped diamond(111) surfaces: an ab initio study”
    DOI: 10.1039/d1cp00689d
  9. Ryoma Sasaki*, Makoto Moriya, Yuki Watanabe, Kazunori Nishio, Taro Hitosugi, Yoshitaka Tateyama*, J. Mater. Chem. A 9, 14897-14903 (2021). “Peculiarly fast Li-ion conduction mechanism in a succinonitrile-based molecular crystal electrolyte: a molecular dynamics study”
    DOI: 10.1039/D1TA02809J
  10. Randy Jalem, Yoshitaka Tateyama, Kazunori Takada, Masanobu Nakayama, Chem. Mater. 33, 5859-5871 (2021). “First-Principles DFT study on Inverse Ruddlesden-Popper Tetragonal Compounds as Solid Electrolytes for All-Solid-State Li+-Ion Batteries”
    DOI: 10.1021/acs.chemmater.1c00124
  11. Hong-Kang Tian, Randy Jalem, Masaki Matsui, Toshihiko Mandai, Hidetoshi Somekawa, Yoshitaka Tateyama*, J. Mater. Chem. A 9, 15207-15216 (2021). “Tuning the performance of a Mg negative electrode through grain boundaries and alloying toward the realization of Mg batteries”
    DOI: 10.1039/d1ta02419a
  12. Yong Youn, Bo Gao, Azusa Kamiyama, Kei Kubota, Shinichi Komaba, Yoshitaka Tateyama*, npj Comput. Mater. 7, 48 (2021). “Nanometer-size Na cluster formation in micropore of hard carbon as origin of higher-capacity Na-ion battery”
    DOI: 10.1038/s41524-021-00515-7
  13. Shisheng Li, Jinhua Hong, Bo Gao, Yung-Chang Lin, Hong En Lim, Xueyi Lu, Jing Wu, Song Liu, Yoshitaka Tateyama, Yoshiki Sakuma, Kazuhito Tsukagoshi, Kazu Suenaga and Taniguchi Takaaki, Adv. Sci. 8, 2004438 (2021). “Tunable Doping of Rhenium and Vanadium into Transition Metal Dichalcogenides for Two-Dimensional Electronics”
    DOI: 10.1002/advs.202004438
  14. F. A. Vásquez, N.C. Rosero-Navarro*, A. Miura, R. Jalem*, Y. Goto, M. Nagao, Y. Tateyama, K. Tadanaga, J. A. Calderón*, ACS Appl. Mater. Interfaces 13, 14056-14067 (2021). “Kinetic Control of the Li0.9Mn1.6Ni0.4O4 Spinel Structure with Enhanced Electrochemical Performance”
    DOI: 10.1021/acsami.0c17886
  15. Bo Gao*, Randy Jalem, Yoshitaka Tateyama*, ACS Appl. Mater. Interfaces 13, 11765-11773 (2021). “First-principles Study of Microscopic Electrochemistry at the LiCoO2 Cathode/LiNbO3 Coating/β-Li3PS4 Solid Electrolyte Interfaces in an All-Solid-State Battery”
    DOI: 10.1021/acsami.0c19091
  16. Atsushi Ishikawa*, Yoshitaka Tateyama, ACS Catal. 11, 2691-2700 (2021). “A First-Principle Microkinetics for Homogeneous-Heterogeneous Reaction: Application to Oxidative Coupling of Methane Catalyzed by Magnesium Oxide”
    DOI: 10.1021/acscatal.0c04104
    JST Press release
  17. Yuuki Sugawara, Keigo Kamata, Atsushi Ishikawa, Yoshitaka Tateyama, Takeo Yamaguchi*, ACS Appl. Energy Mater. 4, 3057-3066 (2021). “Efficient Oxygen Evolution Electrocatalysis on CaFe2O4 and its Reaction Mechanism”
    DOI: 10.1021/acsaem.0c02710
    TITech Press release
  18. Marcela Calpa, Nataly Carolina Rosero-Navarro, Akira Miura, Randy Jalem, Yoshitaka Tateyama, Kiyoharu Tadanaga, Appl. Mater. Today 22, 100918 (2021). “Chemical stability of Li4PS4I solid electrolyte against hydrolysis”
    DOI: 10.1016/j.apmt.2020.100918
  19. Azusa Kamiyama, Kei Kubota, Daisuke Igarashi, Yong Youn, Yoshitaka Tateyama, Hideka Ando, Kazuma Gotoh, Shinichi Komaba*, Angew. Chem. Int. Ed. 60, 5114-5120 (2021). MgO‐Template Synthesis of Extremely High Capacity Hard Carbon for Na‐Ion Battery
    DOI: 10.1002/anie.202013951
  20. Atsushi Ishikawa*, Yoshitaka Tateyama, Catal. Lett. 151, 627–633 (2021). “Hybrid Functional Study of H-Abstraction from Methane by Li-Doped, Pristine and Stepped MgO(100) and MgO(110) Surface”
    DOI: 10.1007/s10562-020-03358-x

2020

  1. Feilure Tuerxun, Kentaro Yamamoto*, Toshihiko Mandai, Yoshitaka Tateyama, Koji Nakanishi, Tomoki Uchiyama, Toshiki Watanabe, Yusuke Tamenori, Kiyoshi Kanamura, Yoshiharu Uchimoto, J. Phys. Chem. C 124, 28510-28519 (2020). “Effect of Interaction among Magnesium Ions, Anion, and Solvent on Kinetics of the Magnesium Deposition Process”
    DOI: 10.1021/acs.jpcc.0c08268
  2. Hong-Kang Tian, Randy Jalem, Bo Gao, Yuta Yamamoto, Shunsuke Muto, Miyuki Sakakura, Yasutoshi Iriyama, Yoshitaka Tateyama, ACS Appl. Mater. Interfaces 12, 54752–54762 (2020). “Electron and Ion Transfer across Interfaces of the NASICON-Type LATP Solid Electrolytes with Electrodes in All-Solid-State Batteries: A Density Functional Theory Study via an Explicit Interface Model”
    DOI: 10.1021/acsami.0c16463
  3. Yukihiro Okuno, Jun Haruyama, Yoshitaka Tateyama, ACS Appl. Energy Mater. 3, 11061-11072 (2020). “Comparative Study on Sulfide and Oxide Electrolyte Interfaces with Cathodes in All-Solid-State Battery via First-Principles Calculations”
    DOI:10.1021/acsaem.0c02033
  4. Randy Jalem, Akitoshi Hayashi, Fumika Tsuji, Atsushi Sakuda, Yoshitaka Tateyama, Chem. Mater. 32, 8373-8381 (2020). “First-Principles Calculation Study of Na+ Superionic Conduction Mechanism in W- and Mo-Doped Na3SbS4 Solid Electrolytes”
    DOI: 10.1021/acs.chemmater.0c02318
  5. Kasumi Miyazaki, Norio Takenaka, Eriko Watanabe, Yuki Yamada, Yoshitaka Tateyama, Atsuo Yamada*, ACS Appl. Mater. Interfaces 12, 42734-42738 (2020). “First-Principles Study on the Cation-Dependent Electrochemical Stabilities in Li/Na/K Hydrate-Melt Electrolytes”
    DOI: 10.1021/acsami.0c10472
  6. Kota Murakami, Yuta Tanaka, Ryuya Sakai, Kenta Toko, Kazuharu Ito, Atsushi Ishikawa, Takuma Higo, Tomohiro Yabe, Shuhei Ogo, Masatoshi Ikeda, Hideaki Tsuneki, Hiromi Nakai, Yasushi Sekine, Catalysis Today 351, 119-124 (2020). “The important role of N2H formation energy for low-temperature ammonia synthesis in an electric field”
    DOI: 10.1016/j.cattod.2018.10.055
  7. Nataly Carolina Rosero-Navarro, Ryunosuke Kajiura, Randy Jalem, Yoshitaka Tateyama, Akira Miura, Kiyoharu Tadanaga, ACS Appl. Energy Mater. 3, 5533-5541 (2020). “Significant reduction in the interfacial resistance of garnet-type solid electrolyte and lithium metal by thick amorphous lithium silicate layer”
    DOI:10.1021/acsaem.0c00511
  8. Satoshi Haku, Atsushi Ishikawa, Akira Musha, Hiroyasu Nakayama, Takashi Yamamoto, Kazuya Ando, Phys. Rev. Appl. 13, 044069 (2020). “Surface Rashba-Edelstein Spin-Orbit Torque Revealed by Molecular Self-Assembly”
    DOI: 10.1103/physrevapplied.13.044069
  9. Ryuya Sakai, Kota Murakami, Yuta Mizutani, Yuta Tanaka, Sasuga Hayashi, Atsushi Ishikawa, Takuma Higo, Shuhei Ogo, Hideaki Tsuneki, Hiromi Nakai, Yasushi Sekine, ACS Omega 5, 6846-6851 (2020). “Agglomeration Suppression of a Fe-Supported Catalyst and its Utilization for Low-Temperature Ammonia Synthesis in an Electric Field”
    DOI: 10.1021/acsomega.0c00170
  10. Feilure Tuerxun, Kentaro Yamamoto, Masashi Hattori, Toshihiko Mandai, Koji Nakanishi, Ashu Choudhary, Yoshitaka Tateyama, Keitaro Sodeyama, Aiko Nakao, Tomoki Uchiyama, Masaki Matsui, Kazuki Tsuruta, Yusuke Tamenori, Kiyoshi Kanamura, Yoshiharu Uchimoto, ACS Appl. Mater. Interfaces 12, 25775-25785 (2020). “Determining Factor on the Polarization Behavior of Magnesium Deposition for Magnesium Battery Anode”
    DOI: 10.1021/acsami.0c03696
  11. Bo Gao, Randy Jalem, Yoshitaka Tateyama, ACS Appl. Mater. Interfaces 12, 16350-16358 (2020). “Surface-Dependent Stability of Interface between the Garnet Li7La3Zr2O12 and the Li Metal in the All-Solid-State Battery from First-Principles Calculations”
    DOI: 10.1021/acsami.9b23019
  12. Takeshi Baba, Keitaro Sodeyama, Yoshiumi Kawamura, Yoshitaka Tateyama, Phys. Chem. Chem. Phys. 22, 10764-10774 (2020). “Li-ion transport at the interface between a graphite anode and Li2CO3solid electrolyte interphase: ab initio molecular dynamics study”
    DOI: 10.1039/C9CP06608J
  13. Atsushi Ishikawa, Yoshitaka Tateyama, J. Phys. Chem. C 124, 6054-6062 (2020). “What Is the Active Site for the Oxidative Coupling of Methane Catalyzed by MgO? A Metadynamics-Biased Ab Initio Molecular Dynamics Study”
    DOI: 10.1021/acs.jpcc.9b09959
  14. Kota Murakami, Shuhei Ogo, Atsushi Ishikawa, Yuna Takeno, Takuma Higo, Hideaki Tsuneki, Hiromi Nakai , Yasushi Sekine, J. Chem. Phys. 152, 014707 (2020). “Heteroatom doping effects on interaction of H2O and CeO2(111) surfaces studied using density functional theory: Key roles of ionic radius and dispersion”
    DOI: 10.1063/1.5138670
  15. M. H. N. Assadi, Masashi Okubo, Atsuo Yamada, Yoshitaka Tateyama, Phys. Rev. Mater. 4, 015401 (2020). “Possible high-potential ilmenite type Na1MO3 (M = V–Ni) cathodes realized by dominant oxygen redox reaction”
    DOI: 10.1103/PhysRevMaterials.4.015401
  16. Bo Gao, Randy Jalem, Yanming Ma, Yoshitaka Tateyama, Chem. Mater. 32, 85-96 (2020). “Li+ Transport Mechanism at the Heterogeneous Cathode/Solid Electrolyte Interface in an All-Solid-State Battery via the First-Principles Structure Prediction Scheme”
    DOI: 10.1021/acs.chemmater.9b02311

2019

  1. Atsushi Ishikawa, Keitaro Sodeyama, Yasuhiko Igarashi, Tomofumi Nakayama, Yoshitaka Tateyama, Masato Okada, Phys. Chem. Chem. Phys. 21, 26339-26405 (2019). “Machine learning prediction of coordination energies for alkali group elements in battery electrolyte solvents”
    DOI: 10.1039/C9CP03679B
  2. Takao Tsuneda, Yoshitaka Tateyama, Phys. Chem. Chem. Phys. 21, 22990-22998 (2019). “On principal features of organic electrolyte molecules in lithium ion battery performance”
    DOI: 10.1039/c9cp03980e
  3. Kasumi Miyazaki, Norio Takenaka, Eriko Watanabe, Shota Iizuka, Yuki Yamada, Yoshitaka Tateyama, Atsuo Yamada, J. Phys. Chem. Lett. 10, 6301-6305 (2019). “First-Principles Study on the Peculiar Water Environment in a Hydrate-Melt Electrolyte”
    DOI: 10.1021/acs.jpclett.9b02207
  4. Kota Murakami, Yuta Tanaka, Sasuga Hayashi, Ryuya Sakai, Yudai Hisai, Yuta Mizutani, Atsushi Ishikawa, Takuma Higo, Shuhei Ogo, Jeong Gil Seo, Hideaki Tsuneki, Hiromi Nakai, Yasushi Sekine, J. Chem. Phys. 151, 064708 (2019). “Governing factors of supports of ammonia synthesis in an electric field found using density functional theory”
    DOI: 10.1063/1.5111920
  5. Takahiro Hirai, Masaki Okoshi, Atsushi Ishikawa and Hiromi Nakai, Surf. Sci. 686, 58-62 (2019). “Temperature- and pressure-dependent adsorption configuration of {NO} molecules on Rh(111) surface: A theoretical study”
    DOI: 10.1016/j.susc.2019.04.004
  6. Seongjae Ko, Yuki Yamada, Kasumi Miyazaki, Tatau Shimada, Eriko Watanabe, Yoshitaka Tateyama, Takeshi Kamiya, Tsunetoshi Honda, Jun Akikusa, Atsuo Yamada, Electrochem. Commun. 104, 106488 (2019). “Lithium-salt monohydrate melt: A stable electrolyte for aqueous lithium-ion batteries”,
    DOI: 10.1016/j.elecom.2019.106488
  7. Yoshitaka Tateyama, Bo Gao, Randy Jalem, Jun Haruyama, Curr. Opin. Electrochem. 17, 149-157 (2019). “Theoretical picture of positive electrode / solid electrolyte interface in all-solid-state battery from electrochemistry and semiconductor physics viewpoints”
    DOI: 10.1016/j.coelec.2019.06.003
  8. Chizu Yamaguchi, Keisuke Natsui, Shota Iizuka, Yoshitaka Tateyama, Yasuaki Einaga, Phys. Chem. Chem. Phys. 21, 13788 (2019). “Electrochemical properties of fluorinated boron-doped diamond electrodes via fluorine-containing plasma treatment”,
    DOI: 10.1039/c8cp07402j
  9. Atsushi Ishikawa, Yoshitaka Tateyama, J. Comp. Chem. 40, 1866-1873 (2019). “Reaction Energy Benchmarks of Hydrocarbon Combustion by Gaussian Basis and Plane Wave Basis Approaches”
    DOI: 10.1002/jcc.25838
  10. Toshihiko Mandai, Kenji Tatesaka, Kenya Soh, Hyuma Masu, Ashu Choudhary, Yoshitaka Tateyama, Ryuta Ise, Hiroaki Imai, Tetsuya Takeguchi, Kiyoshi Kanamura, Phys. Chem. Chem. Phys. 21, 12100-12111 (2019). “Modifications in coordination structure of Mg[TFSA]2-based supporting salts for high-voltage magnesium rechargeable batteries”
    DOI: 10.1039/C9CP01400D
  11. Seiji Kasahara, Taiga Ogose, Norihito Ikemiya, Takashi Yamamoto, Keisuke Natsui, Yasuyuki Yokota, Raymond A. Wong, Shota Iizuka, Nagahiro Hoshi, Yoshitaka Tateyama, Yousoo Kim, Masashi Nakamura, Yasuaki Einaga, Anal. Chem. 91, 4980–4986 (2019). “In Situ Spectroscopic Study on the Surface Hydroxylation of Diamond Electrodes”
    DOI: 10.1021/acs.analchem.8b03834
  12. Tribidasari A. Ivandini, Takeshi Watanabe, Takahiro Matsui, Yusuke Ootani, Shota Iizuka, Ryo Toyoshima, Hideyuki Kodama, Hiroshi Kondoh, Yoshitaka Tateyama, Yasuaki Einaga, J. Phys. Chem. C 123, 5336-5344 (2019). “Influence of the Surface Orientation on the Electrochemical Properties of Boron-Doped Diamond”
    DOI: 10.1021/acs.jpcc.8b10406
  13. Eriko Watanabe, Keitaro Sodeyama, Yoshitaka Tateyama, Atsuo Yamada, Chem. Rec. 19, 792-798 (2019). “Combined Theoretical and Experimental Studies of Sodium Battery Materials”
    DOI: 10.1002/tcr.201800125
  14. M. H. N. Assadi, Masashi Okubo, Atsuo Yamada, Yoshitaka Tateyama, J. Electrochem. Soc. 166, A5343-A5348 (2019). “Oxygen Redox Promoted by Na Excess and Covalency in Hexagonal and Monoclinic Na2-xRuO3 Polymorphs”
    DOI: 10.1149/2.0521903jes
  15. Yukihiro Okuno, Keisuke Ushirogata, Keitaro Sodeyama, Ganes Shukri, Yoshitaka Tateyama, J. Phys. Chem. C 123, 2267-2277 (2019). “Structures, Electronic States, and Reactions at Interfaces between LiNi0.5Mn1.5O4 Cathode and Ethylene Carbonate Electrolyte: A First-Principles Study”
    DOI: 10.1021/acs.jpcc.8b10625

2018

  1. Lucie Szabova, Matteo Farnesi Camellone, Fabio Negreiros Ribeiro, Vladimir Matolin, Yoshitaka Tateyama, Stefano Fabris, J. Phys. Chem. C 122, 27507-27515 (2018). “Dynamical Solvent Effects on the Charge and Reactivity of Ceria-Supported Pt Nanoclusters”
    DOI: 10.1021/acs.jpcc.8b09154
  2. Masanobu Nakayama, Kenta Kanamori, Koki Nakano, Randy Jalem, Ichiro Takeuchi, Hisatsugu Yamasaki, Chem. Rec. 18, 1-9 (2018). “Data-driven Materials Exploration for Li-ion Conductive Ceramics by Exhaustive and Informatics-aided Computations”
    DOI: 10.1002/tcr.201800129
  3. Masashi Hattori, Kentaro Yamamoto, Masaki Matsui, Koji Nakanishi, Toshihiko Mandai, Ashu Choudhary, Yoshitaka Tateyama, Keitaro Sodeyama, Tomoki Uchiyama, Yuki Orikasa, Yusuke Tamenori, Tasuya Takeguchi, Kiyoshi Kanamura, Yoshiharu Uchimoto, J. Phys. Chem. C 122, 25204-25210 (2018). “Role of Coordination Structure of Magnesium Ions on Charge and Discharge Behavior of Magnesium Alloy Electrode”
    DOI: 10.1021/acs.jpcc.8b08558
  4. Keitaro Sodeyama, Yasuhiko Igarashi, Tomofumi Nakayama, Yoshitaka Tateyama, Masato Okada, Phys. Chem. Chem. Phys. 20, 22585-22591 (2018). “Liquid electrolyte informatics using an exhaustive search with linear regression”
    DOI: 10.1039/c7cp08280k
  5. Hiromasa Shiiba, Nobuyuki Zettsu, Miho Yamashita, Hitoshi Onodera, Randy Jalem, Masanobu Nakayama, Katsuya Teshima, J. Phys. Chem. C 122, 21755-21762 (2018). “Molecular Dynamics Studies on the Lithium Ion Conduction Behaviors Depending on Tilted Grain Boundaries with Various Symmetries in Garnet-Type Li7La3Zr2O12”
    DOI: 10.1021/acs.jpcc.8b06275
  6. Atsushi Ishikawa, Yoshitaka Tateyama, J. Phys. Chem. C 122, 17378-17388 (2018). “First-Principles Microkinetic Analysis of NO + CO Reactions on Rh(111) Surface toward Understanding NOx Reduction Pathways”
    DOI: 10.1021/acs.jpcc.8b05906
  7. Randy Jalem, Kenta Kanamori, Ichiro Takeuchi, Masanobu Nakayama, Hisatsugu Yamasaki, Toshiya Saito, Sci. Rep. 8, 5845 (2018). “Bayesian-Driven First-Principles Calculations for Accelerating Exploration of Fast Ion Conductors for Rechargeable Battery Application”
    DOI: 10.1038/s41598-018-23852-y
  8. Randy Jalem, Masanobu Nakayama, Yusuke Noda, Tam Le, Ichiro Takeuchi, Yoshitaka Tateyama, Hisatsugu Yamazaki, Sci. Tech. Adv. Mater.19, 231-242 (2018). “A General Representation Scheme for Crystalline Solids based on Voronoi-Tessellation Real Feature Values and Atomic Property Data”
    DOI: 10.1080/14686996.2018.1439253
  9. Randy Jalem, Japan engineering & technology intelligence 66, 33-40 (2018). “DFT計算とベイズ最適化を組み合わせた全個体電池用高速イオン伝導体材料の効率的探索”
    https://www.jstage.jst.go.jp/article/jsaeronbun/50/3/50_20194340/_pdf
  10. Filip Dvořák, Lucie Szabová, Viktor Johánek, Matteo Farnesi Camellone, Vitalii Stetsovych, Mykhailo Vorokhta, Andrii Tovt, Tomáš Skála, Iva Matolínová, Yoshitaka Tateyama, Josef Mysliveček, Stefano Fabris, Vladimír Matolín, ACS Catal. 8, 4354-4363 (2018). “Bulk Hydroxylation and Effective Water Splitting by Highly Reduced Cerium Oxide: The Role of O Vacancy Coordination”
    DOI: 10.1021/acscatal.7b04409
  11. M. H. N. Assadi, Masashi Okubo, Atsuo Yamada, Yoshitaka Tateyama*, J. Mater. Chem. A 6, 3747-3753 (2018). “Oxygen redox in hexagonal layered NaxTMO3 (TM =4d elements) for high capacity Na ion batteries”
    DOI: 10.1039/C7TA10826E
  12. Jianhui Wang, Yuki Yamada, Keitaro Sodeyama, Eriko Watanabe, Koji Takada, Yoshitaka Tateyama, Atsuo Yamada*, Nat. Energy 3, 22-29 (2018). “Fire-extinguishing organic electrolytes for safe batteries”
    DOI: 10.1038/s41560-017-0033-8
  13. Shuhei Ogo, Hideaki Nakatsubo, Kousei Iwasaki, Ayaka Sato, Kota Murakami, Tomohiro Yabe, Atsushi Ishikawa, Hiromi Nakai, Yasushi Sekine, J. Phys. Chem. C 122, 2089-2096 (2018). “Electron-Hopping Brings Lattice Strain and High Catalytic Activity in the Low-Temperature Oxidative Coupling of Methane in an Electric Field”
    DOI: 10.1021/acs.jpcc.7b08994

2017

  1. Jun Haruyama*, Keitato Sodeyama, Ikutaro Hamada, Liyuan Han, Yoshitaka Tateyama*, J. Phys. Chem. Lett. 8, 5840-5847 (2017). “First-Principles Study of Electron Injection and Defects at the TiO2/ CH3NH3PbI3 Interface of Perovskite Solar Cells”
    DOI: 10.1021/acs.jpclett.7b02622
  2. Seiji Kasahara, Keisuke Natsui, Takeshi Watanabe, Yasuyuki Yokota, Yousoo Kim, Shota Iizuka, Yoshitaka Tateyama, Yasuaki Einaga, Anal. Chem. 89, 11341-11347 (2017). “Surface Hydrogenation of Boron-Doped Diamond Electrodes by Cathodic Reduction”
    DOI: 10.1021/acs.analchem.7b02129
  3. Koji Takada, Yuki Yamada, Eriko Watanabe, Wang Jianhui, Keitaro Sodeyama, Yoshitaka Tateyama, Kazuhisa Hirata, Takeo Kawase, Atsuo Yamada, ACS Appl. Mater. Interfaces 9, 33802-33809 (2017). “Unusual Passivation Ability of Superconcentrated Electrolytes toward Hard Carbon Negative Electrodes in Sodium-Ion Batteries”
    DOI: 10.1021/acsami.7b08414
  4. Makito Takagi, Tetsuya Taketsugu, Hiori Kino, Yoshitaka Tateyama, Kiyoyuki Terakura, Satoshi Maeda, Phys. Rev. B 95, 184110 (2017). “Global search for low-lying crystal structures using the artificial force induced reaction method: A case study on carbon”
    DOI: 10.1103/PhysRevB.95.184110
  5. Satoshi Kajiyama, Lucie Szabova, Hiroki Iinuma, Akira Sugahara, Kazuma Gotoh, Keitaro Sodeyama, Yoshitaka Tateyama, Masashi Okubo, Atsuo Yamada, Adv. Energy Mater. 7, 1601873 (2017). “Enhanced Li-Ion Accessibility in MXene Titanium Carbide by Steric Chloride Termination”
    DOI: 10.1002/aenm.201601873
  6. Jun Haruyama, Keitaro Sodeyama, Yoshitaka Tateyama*, ACS Appl. Mater. Interfaces 9, 286-292 (2017). “Cation Mixing Properties toward Co Diffusion at the LiCoO2 Cathode/ Sulfide Electrolyte Interface in a Solid-State Battery”
    DOI: 10.1021/acsami.6b08435
  7. Martin Callsen, Keitaro Sodeyama, Zdnek Futera, Yoshitaka Tateyama, Ikutaro Hamada*, J. Phys. Chem. B 121, 180-188 (2017). “The Solvation Structure of Lithium Ions in an Ether Based Electrolyte Solution from First-Principles Molecular Dynamics”
    DOI: 10.1021/acs.jpcb.6b09203

2016

  1. Marco Fronzi, Yoshitaka Tateyama, Nicola Marzari, Michael Nolan, Enrico Tarversa, Mater. Renew. Sustain. Energy 5, 14 (2016). “First-Principles Molecular Dynamics Simulations of Proton Diffusion in Cubic BaZrO3 Perovskite under Strain Conditions”
    DOI:10.1007/s40243-016-0078-9
  2. Yuki Yamada, Kenji, Usui, Keitaro Sodeyama, Seongjae Ko, Yoshitaka Tateyama, Atsuo Yamada*, Nat. Energy 1, 16129 (2016). “Hydrate-melt electrolytes for high-energy-density aqueous batteries”
    DOI: 10.1038/NENERGY.2016.129
  3. Matteo Farnesi Camellone, Fabio Negreiros Ribeiro, Lucie Szabova, Yoshitaka Tateyama, Stefano Fabris, J. Am Chem. Soc. 138, 11560-11567 (2016). “Catalytic Proton Dynamics at the Water/Solid Interface of Ceria Supported Pt Clusters”
    DOI: 10.1021/jacs.6b03446
  4. Jianhui Wang, Yuki Yamada, Keitaro Sodeyama, Ching Hua Chiang, Yoshitaka Tateyama, Atsuo Yamada*, Nat. Commun. 7, 12032 (2016). “Superconcentrated electrolytes for a high-voltage lithium-ion battery”
    DOI: 10.1038/ncomms12032
  5. Takeshi Kashiwada, Takeshi Watanabe, Yusuke Ootani, Yoshitaka Tateyama, Yasuaki Einaga, ACS Appl. Mater. Interfaces 8, 28299-28305 (2016). “A Study on Electrolytic Corrosion of Boron-Doped Diamond Electrodes when Decomposing Organic Compounds”
    DOI: 10.1021/acsami.5b11638
  6. Yukihiro Okuno*, Keisuke Ushirogata, Keitaro Sodeyama, Yoshitaka Tateyama*, Phys. Chem. Chem. Phys. 18, 8643-8653 (2016). “Decomposition of the fluoroethylene carbonate additive and the glue effect of lithium fluoride products for the solid electrolyte interphase: an ab initio study”
    DOI: 10.1039/C5CP07583A
  7. Johan Scheers, D. Lidberg, Keitaro Sodeyama, Zdenek Futera, Yoshitaka Tateyama, Phys. Chem. Chem. Phys. 18, 9961-9968 (2016). “Life of superoxide in aprotic Li–O2 battery electrolytes: simulated solvent and counter-ion effects”
    DOI: 10.1039/C5CP08056H
  8. Jun Haruayama, Keitaro Sodeyama, Liyuan Han, Yoshitaka Tateyama*, Acc. Chem. Res. 49, 554-561 (2016). “Surface Properties of CH3NH3PbI3 for Perovskite Solar Cells”
    DOI: 10.1021/acs.accounts.5b00452
  9. Satoshi Kajiyama, Lucie Szabova, Keitaro Sodeyama, Hiroki Iinuma, Ryohei Morita, Kazuma Gotoh, Yoshitaka Tateyama, Masashi Okubo, Atsuo Yamada, ACS Nano 10, 3334–3341 (2016). “Sodium-Ion Intercalation Mechanism in MXene Nanosheets”
    DOI: 10.1021/acsnano.5b06958
  10. Yusuke Ootani, Keitaro Sodeyama, Liyuan Han, Yoshitaka Tateyama*, Surf. Sci. 649, 66-71 (2016). “First-principles study on the cosensitization effects of Ru and squaraine dyes on a TiO2 surface”
    DOI: 10.1016/j.susc.2016.01.025

2015

  1. Yoshiyuki Miyamoto, Yoshitaka Tateyama, Norihisa Oyama, Takahisa Ohno, Sci. Rep. 5, 18220 (2015). “Conservation of the pure adiabatic state in Ehrenfest dynamics of the photoisomerization of molecules”
    DOI: 10.1038/srep18220
  2. Yuki Yamada, Ching Hua Chiang, Keitaro Sodeyama, Jianhui Wang, Yoshitaka Tateyama, Atsuo Yamada, ChemElectroChem 2, 1687-1694 (2015). “Corrosion Prevention Mechanism of Aluminum Metal in Superconcentrated Electrolytes”
    DOI: 10.1002/celc.201500235
  3. Takeo Ohsawa, Shigenori Ueda, Motohiro Suzuki, Yoshitaka Tateyama, Jesse R. Williams, Naoki Ohashi, Appl. Phys. Lett. 107, 171604 (2015). “Investigating crystalline-polarity-dependent electronic structures of GaN by hard x-ray photoemission and ab-initio calculations”
    DOI: 10.1063/1.4934842
  4. Keisuke Ushirogata, Keitaro Sodeyama, Zdenek Futera, Yoshitaka Tateyama*, Yukihiro Okuno*, J. Electrochem. Soc. 162, A2670-A2678 (2015). “Near-Shore Aggregation Mechanism of Electrolyte Decomposition Products to Explain Solid Electrolyte Interphase Formation”
    DOI: 10.1149/2.0301514jes
  5. Ryota Jono, Yoshitaka Tateyama, Koichi Yamashita, Phys. Chem. Chem. Phys. 17, 27103-27108 (2015). “A method to calculate redox potentials relative to the normal hydrogen electrode in nonaqueous solution by using density functional theory-based molecular dynamics”
    DOI: 10.1039/c5cp05029d
  6. Jun Haruyama, Keitaro Sodeyama, Liyuan Han, Yoshitaka Tateyama*, J. Am. Chem. Soc. 137, 10048-10051 (2015). “First-Principles Study of Ion Diffusion in Perovskite Solar Cell Sensitizers”
    DOI: 10.1021/jacs.5b03615
  7. Kazunori Takada, Narumi Ohta, Yoshitaka Tateyama, J. Inorg. Organomet. Polym. 25, 205-213 (2015). “Recent Progress in Interfacial Nanoarchitectonics in Solid-State Batteries”
    DOI: 10.1007/s10904-014-0127-8
  8. Lucie Szabova, Yoshitaka Tateyama, Vladimir. Matolin, Stefano Fabris, J. Phys. Chem. C 119, 2537-2544 (2015). “Water Adsorption and Dissociation at Metal-Supported Ceria Thin Films: Thickness and Interface-Proximity Effects Studied with DFT+U Calculations”
    DOI: 10.1021/jp5109152
  9. Yusuke Ootani, Keitaro Sodeyama, Liyuan Han, Yoshitaka. Tateyama*, J. Phys. Chem. C, 119, 234-241 (2015). “Possibility of NCS Group Anchor for Ru Dye Adsorption to Anatase TiO2 (101) Surface: A Density Functional Theory Investigation”
    DOI: 10.1021/jp5075434

2014

  1. Zdenek Futera, Takeshi Watanabe, Yasuaki Einaga, Yoshitaka Tateyama*, J. Phys. Chem. C, 118, 22040-22052 (2014). “First Principles Calculation Study on Surfaces and Water Interfaces of Boron-Doped Diamond”,
    DOI: 10.1021/jp506046m
  2. Jun Haruyama, Keitaro Sodeyama, Liyuan Han, Yoshitaka Tateyama*, J. Phys. Chem. Lett. 5, 2903-2909 (2014). “Termination Dependence of Tetragonal CH3NH3PbI3 Surfaces for Perovskite Solar cells”,
    DOI: 10.1021/jz501510v
  3. Zdenek Futera, Keitaro Sodeyama, Jaroslav V. Burda, Yoshitaka Tateyama*, Phys. Chem. Chem. Phys. 16, 19530-19539 (2014). “A double-QM/MM method for investigating donor-acceptor electron-transfer reactions in solution”,
    DOI: 10.1039/c4cp02307b
  4. Yoshitaka Tateyama*, Masato Sumita, Yusuke Ootani, Koharu Aikawa, Ryota Jono, Liyuan Han, Keitaro Sodeyama, J. Phys. Chem. C 118, 16863-16871 (2014). “Acetonitrile Solution Effect on Ru N749 Dye Adsorption and Excitation at TiO2 Anatase Interface”,
    DOI: 10.1021/jp5004006
  5. Keitaro Sodeyama, Yuki Yamada, Koharu Aikawa, Atsuo Yamada, Yoshitaka Tateyama*, J. Phys. Chem. C 118, 14091-14097 (2014). “Sacrificial anion reduction mechanism for electrochemical stability improvement in highly concentrated Li-salt electrolyte”,
    DOI: 10.1021/jp501178n
  6. Wim Van Rossom, Tatyana G Terentyeva, Keitaro Sodeyama, Yoshitaka Matsushita, Yoshitaka Tateyama, Katsuhiko Ariga, Jonathan P. Hill, Org. Biomol. Chem. 12, 5492-5499 (2014). “Arylpyrrole oligomers as tunable anion receptors”,
    DOI: 10.1039/C4OB00357H
  7. Jun Haruyama, Keitaro Sodeyama, Liyuan Han, Kazunori Takada, Yoshitaka Tateyama*, Chem. Mater. 26, 4248-4255 (2014). “Space-Charge Layer Effect at Interface between Oxide cathode and Sulfide Electrolyte in All-Solid-State Lithium-Ion Battery”,
    DOI: 10.1021/cm5016959
  8. Yuki Yamada, Keizo Furukawa, Keitaro Sodeyama, Keisuke Kikuchi, Makoto Yaegashi, Yoshitaka Tateyama, Atsuo Yamada*, J. Am. Chem. Soc. 136, 5039-5046 (2014). “Unusual Stability of Acetonitrile-Based Superconcentrated Electrolytes for Fast-Charging Lithium-Ion Batteries”,
    DOI: 10.1021/ja412807w
  9. J. Labuta, Z. Futera, S. Ishihara, H. Kourilova, Y. Tateyama, K. Ariga, and J. Hill, J. Am. Chem. Soc. 136, 2112-2118 (2014). “Chiral Guest Binding as a Probe of Macrocycle Dynamics and Tautomerism in a Conjugated Tetrapyrrole”,
    DOI: 10.1021/ja4124175

~2013

  • Chuanjian Qin, Youhei Numata, Shufang Zhang, Ashraful Islam, Xudong Yang, Keitaro Sodyama, Yoshitaka Tateyama, Liyuan Han, Adv. Funct. Mater. 23, 3782-3789 (2013). “A Near-Inrared cis-Configured Squaraine Co-Sensitizer for High-Efficiency Dye-Sensitized Solar Cells”,
    DOI: 10.1002/adfm.201203384
  • Keisuke Ushirogata, Keitaro Sodeyama, Yukihiro Okuno, and Yoshitaka Tateyama, J. Am. Chem. Soc. 135, 11967-11974 (2013). “Additive Effect on Reductive Decomposition and Binding of Carbonate-Based Solvent toward Solid Electrolyte Interphase Formation in Lithium-Ion Battery”,
    DOI: 10.1021/ja405079s
  • Tomoki Kobori, Keitaro Sodeyama, Takao Otsuka, Yoshitaka Tateyama, Shinji Tsuneyuki, J. Chem. Phys. 139, 094113 (2013). “Trimer effects in fragment molecular orbital-linear combination of molecular orbital calculation of one-electron orbitals for biomolecules”,
    DOI: 10.1063/1.4818599
  • Hiroyoshi Momida, Yusuke Asari, Yoshimichi Nakamura, Yoshitaka Tateyama, Takahisa Ohno, Phys. Rev. B 88, 144107 (2013). “Hydrogen-enhanced vacancy embrittlement of grain boundaries of iron”,
    DOI: 10.1103/PhysRevB.88.144107
  • Youhei Numata, Ashraful Islam, Keitaro Sodeyama, Zhen-Hua Chen, Yoshitaka Tateyama, and Liyuan Han, J. Mater. Chem. A, 1, 11033-11042, (2013). “Substitution effects of Ru–terpyridyl complexes on photovoltaic and carrier transport properties in dye-sensitized solar cells”,
    DOI: 10.1039/C3TA12152F
  • Yu Seok Yang, Takuma Yasuda, Hayato Kakizoe, Hiroyuki Mieno, Hiori Kino, Yoshitaka Tateyama, Chihaya Adachi, Chem. Commun. 49, 6483-6485 (2013). “High performance organic field-effect transistors based on single-crystal microribbons and microsheets of solution-processed dithieno[3,2-b:2′,3′-d]thiophene derivatives”,
    DOI: 10.1039/C3CC42114G
  • F. Geng, R. Ma, A. Nakamura, K. Akatsuka, Y. Ebina, Y. Yamauchi, N. Miyamoto, Y. Tateyama, T. Sasaki, Nat. Commun. 4, 1632 (2013). “Unusually Stable ~100-Fold Reversible and Instant Swelling of Inorganic Layered Materials”,
    DOI: 10.1038/ncomms2641
  • H. Izawa, K. Kawakami, M. Sumita, Y. Tateyama, J. P. Hill, K. Ariga, J. Mater. Chem. B 1, 2155-2161 (2013). “b-Cyclodextrin-crosslinked alginate gel for patient-controlled drug delivery systems: regulation of host–guest interactions with mechanical stimuli”,
    DOI: 10.1039/c3tb00503h
  • G. Pawin, A. Z. Stieg, C. Skibo, M. Grisolia, R. R. Schilittler, V. Langlais, Y. Tateyama, C. Joachim, J. K. Gimzewski, Langmuir 29, 7309-7317 (2013). “Amplification of Conformational Effects via tert-Butyl Groups: Hexa-tert-butyl Decacyclene on Cu(100) at Room Temperature”,
    DOI: 10.1021/la304634n
  • Masato Sumita, Keitaro Sodeyama, Ryota Jono, Liyuan Han, Yoshitaka Tateyama, Chem. Phys. Lett. 556, 225-229 (2013). “Electronic structure of acetonitrile adsorbed on the anatase TiO2 (101) surface”,
    DOI: 10.1016/j.cplett.2012.11.060
  • Ryota Jono, Masato Sumita, Yoshitaka Tateyama, Koichi Yamashita, J. Phys. Chem. Lett. 3, 3581-3584 (2012). “Redox Reaction Mechanisms with Non-triiodide Mediators in Dye-Sensitized Solar Cells by Redox Potential Calculations”,
    DOI: 10.1021/jz301589a
  • Keitaro Sodeyama, Masato Sumita, Conn O’Rourke, Umberto Terranova, Ashraful Islam, Liyuan Han, David R. Bowler, Yoshitaka Tateyama, J. Phys. Chem. Lett. 3, 472−477 (2012). “Protonated Carboxyl Anchor for Stable Adsorption of Ru N749 Dye (Black Dye) on a TiO2 Anatase (101) Surface”,
    DOI: 10.1021/jz201583n
  • M. Fronzi, S. Cereda, Y. Tateyama, A. De Vita, E. Traversa, Phys. Rev. B86, 085407 (2012). “Ab initio investigation of defect formation at ZrO2-CeO2 interfaces”,
    DOI: 10.1103/PhysRevB.86.085407
  • Kun Zhang, Shufang Zhang, Keitaro Sodeyama, Xudong Yang, Han Chen, Masatoshi Yanagida, Yoshitaka Tateyama, Liyuan Han, Appl. Phys. Express 5, 042303 (2012). “A new factor affecting the performance of dye-sensitized solar cells in the presence of 4-tert-butylpyridine”,
    DOI: 10.1143/APEX.5.042303
  • Jinghua Li, Zdenek Futera, Hongfang Li, Yoshitaka Tateyama, Masatoshi Higuchi, Phys. Chem. Chem. Phys. 13, 4839 (2011). “Conjugation of organic{metallic hybrid polymers and calf-thymus DNA”,
    DOI: 10.1039/c0cp02037k
  • Masato Sumita, Keitaro Sodeyama, Liyuan Han, Yoshitaka Tateyama, J. Phys. Chem. C 115, 19849-19855 (2011). “Water contamination effect on liquid acetonitrile / TiO2 anatase (101) interface for durable dye-sensitized solar cell”,
    DOI: 10.1021/jp206910f
  • Yuji Okawa, Swapan. K. Mandal, Chunping Hu, Yoshitaka Tateyama, Stefan. Goedecker, Shigeru Tsukamoto, Tsuyoshi Hasegawa, James K. Gimzewski, Masakazu Aono, J. Am. Chem. Soc. 133 8227-8233 (2011). “Chemical Wiring and Soldering toward All-Molecule Electronic Circuitry”,
    DOI: 10.1021/ja111673x
  • Chunping Hu, Osamu Sugino, Hirotoshi Hirai, Yoshitaka Tateyama, Phys. Rev. A82, 062508 (2010). “Nonadiabatic couplings from the Kohn-Sham derivative matrix: Formulation by time-dependent density-functional theory and evaluation in the pseudopotential framework”,
    DOI: 10.1103/PhysRevA.82.062508
  • Masato Sumita, Chunping, Hu, Yoshitaka Tateyama, J. Phys. Chem. C 114, 18529-18537 (2010). “Interface Water on TiO2 Anatase (101) and (001) Surfaces: First-Principles Study with TiO2 Slabs Dipped in Bulk Water”,
    DOI: 10.1021/jp105364z
  • L. Wang, C. Hu, Y. Nemoto, Y. Tateyama, Y. Yamauchi, Cryst. Growth Des. 10, 3454-3460 (2010). “On the Role of Ascorbic Acid in the Synthesis of Single-Crystal Hyperbranched Platinum Nanostructures”,
    DOI: 10.1021/cg100207q
  • T. Watanabe, T. K. Shimizu, Y. Tateyama, Y. Kim, M. Kawai, Y. Einaga, Diamond & Related Materials 19, 772-777 (2010). “Giant electric double-layer capacitance of heavily boron-doped diamond electrode”,
    DOI: 10.1016/j.diamond.2010.02.022
  • Chunping Hu, Osamu Sugino, Yoshitaka Tateyama, J. Chem. Phys. 131, 114101 (2009). “All-electron calculation of nonadiabatic couplings from time-dependent density functional theory: Probing with the Hartree-Fock exact exchange”,
    DOI: 10.1063/1.3226344
  • Takatsugu Wakahara, Marappan Sathish, Kun’ichi Miyazawa, Chunping Hu, Yoshitaka Tateyama, Yoshihiro Nemoto, Toshio Sasaki, Osamu Ito, J. Am. Chem. Soc. 131, 9940-9944, (2009). “Preparation and Optical Properties of Fullerene/Ferrocene Hybrid Hexagonal Nanosheets and Large Scale Production of Fullerene Hexagonal Nanosheets”,
    DOI: 10.1021/ja901032b
  • Hoshk Lee, Yoshiyuki Miyamoto, Yoshitaka Tateyama, J. Org. Chem. 74, 562-567 (2009). “Excited State Carbene Formation from UV irradiated Diazomethane”,
    DOI: 10.1021/jo801853h
  • Chunping Hu, Osamu Sugino, Yoshitaka Tateyama, J. Phys: Condens. Matter 21, 064229, (2009). “Calculation of atomic excitation energies by time-dependent density functional theory within modified linear response”,
    DOI: 10.1088/0953-8984/21/6/064229
  • Norihiko Takahashi, Yoshimichi Nakamura, Jun Nara, Yoshitaka Tateyama, Takahisa Ohno, Surf. Sci. 602 768-777 (2008). “Theoretical study of the initial oxidation processes on the Si(001)”,
    DOI: 10.1016/j.susc.2007.12.004
  • Yoshitaka Tateyama, Jochen Blumberger, Takahisa Ohno, Michiel Sprik, J. Chem. Phys. 126, 204506 (2007). “Free energy calculation of water addition coupled to reduction of aqueous RuO4-”,
    DOI: 10.1063/1.2737047
  • Yoshitaka Tateyama, Norihisa Oyama, Takahisa Ohno, Yoshiyuki Miyamoto, J. Chem. Phys. 124, 124507 (2006). “Real-time propagation time-dependent density functional theory study on the ring-opening transformation of the photoexcited crystalline benzene”,
    DOI: 10.1063/1.2181139
  • Yoshitaka Tateyama, Jochen Blumberger, Michiel Sprik, Ivano Tavernelli, J. Chem. Phys. 122, 234505 (2005). “Density-functional molecular-dynamics study of the redox reactions of two anionic, aqueous transition-metal complexes”,
    DOI: 10.1063/1.1938192
  • Yoshitaka Tateyama, Takahisa Ohno, Phys. Rev. B67, 174105 (2003). “Stability and clusterization of hydrogen-vacancy complexes in alpha-Fe: An ab-initio study”,
    DOI: 10.1103/PhysRevB.67.174105
  • Yoshitaka Tateyama, Takahisa Ohno, ISIJ Int. 43, 573 (2003). “Atomic-scale effects of hydrogen in iron toward hydrogen embrittlement: Ab-initio study”,
    DOI: 10.2355/isijinternational.43.573

代表的な解説記事

  • 館山佳尚 “会議だより カー・パリネロ分子動力学(CPMD)ワークショップ”, 固体物理第53巻7号(2018),
  • 館山佳尚 “ホウ素ドープダイヤモンド電極界面反応の理論計算”,NEW DIAMOND第129号Vol.34 No.2 13-15(2018).
  • 館山佳尚 “コラムCPMDおよびstat-CPMD”,固体物理第52巻11号616-616(2017).
  • 館山佳尚、袖山慶太郎、後瀉敬介、奥野幸洋 “2次電池の固液界面・電解液反応の第一原理サンプリング解析”,固体物理第52巻11号 605-615 (2017).
  • 袖山慶太郎、館山佳尚 : “第一原理自由ネルギー計算による酸化還元分解反応機構の解明”, Elecrochemistry, 82, 1091-1097 (2014).

招待講演リスト

2024

2023

  1.  
  2. TATEYAMA, Yoshitaka. Advanced DFT-MD Study on Ion Transport in Solid Electrolyte: Grain Boundary and Ion Correlation. IUMRS-ICAM & ICMAT, Singapore 2023/06/25-30
  3. TATEYAMA, Yoshitaka. Unravelling the Fast Li-ion Conduction Mechanism in Li(FSA)(SN)2 Molecular Crystal: A Molecular Dynamics Study. 2023 Japan-Taiwan Nano Material and Biomedicine Workshop. NIMS, Tsukuba, Japan, 2023/05/16
  4. 館山 佳尚, 高 博, ハレム ランディ. 酸化物固体電解質粒界における界面イオン伝導に関する第一原理MD解析. 日本化学会第103春季年会へ移設シンポジウム 全固体電池のプロセスサイエンス 第2回シンポジウム. 2023/03/23
  5. TATEYAMA, Yoshitaka. Advanced DFT-MD study on Ion Transport in Solid Electrolyte: Grain Boundary and Ion Correlation. Japan-US Information Exchange Seminar on Fundamentals of Next Generation Batteries. NIMS, Tsukuba, Japan, 2023/03/15
  6. TATEYAMA, Yoshitaka. DFT-based studies on “battery” issues. EU-Japan Workshop on High-Performance Computing. online, 2023/01
  7. 館山 佳尚. 第一原理MD を用いた蓄電池のイオン伝導計算手法の開発と応用. 「富岳」電池課題 第3回公開シンポジウム(成果報告会). 2023/01/

2022

  1. 館山 佳尚, ハレム ランディ, 高 博, 佐々木 遼馬. 第一原理計算による全固体電池固体電解質のイオン伝導解析. 第83回応用物理学会秋季学術講演会. 2022/09
  2. TATEYAMA, Yoshitaka. Battery Electrolyte Exploration via Machine Learning Techniques Coupled with High-Throughput DFT Calculations. 73rd Annual Meeting of the International Society of Electrochemistry (73rd ISE). online, 2022/09
  3. 館山 佳尚. イオン伝導度の粒子系理論計算の最先端. 第16回固体イオニクスセミナー. online, 2022/08/06
  4. TATEYAMA, Yoshitaka. Electron and Ion Transfer at Solid-Solid Interface : DFT-based Electrochemistry with Explicit Interface Model. 23rd International Conference on Solid State Ionics (SSI-23). Boston, MA, USA, 2022/07/11
  5. 館山 佳尚. ”Naイオン電池開発に向けたマテリアル計算・データ科学研究”,  触媒・電池元素戦略研究拠点 第19回公開シンポジウム. 2022/03/07
  6. 館山佳尚, “「富岳」「京」を用いた蓄電池内現象の可視化”, 第50回産応協セミナー 計算科学の発展と展望:京・富岳の活用事例を通して, スーパーコンピューティング技術産業応用協議会(産応協/ICSCP), Online, 2022/02/22-24
  7. 館山佳尚, “理論計算による全固体電池の電子・イオン移動の可視化”, 近畿化学協会コンピュータ化学会 第112回例会 公開講演会「電池材料と計算化学」, 近畿化学協会コンピュータ化学部会, Online, 2022/02/15
  8. 館山佳尚, “「京」・「富岳」を用いた蓄電池内現象の見える化”, 「第5回元素戦略シンポジウム」~革新的マテリアルでカーボンニュートラルな社会を構築~, 文部科学省 元素戦略プロジェクト<研究拠点形成型>, Online, 2022/02/03-04

2021

  1. Yoshitaka Tateyama, “First-principles MD simulations of reduction/oxidation reactions in electrolyte solutions”, Pacifichem 2021 Chemical Society of Japan, American Chemical Society, Online, 2021/12/16-21
  2. 館山佳尚, “「富岳」電池課題概要 &全固体電池の材料課題解決への取組み”, 「富岳」成果創出加速プログラム 物質・材料系課題合同研究会プログラム, 「富岳」成果創出加速プログラム 物質・材料系課題, オンライン, 2021/12/08-09
  3. 館山佳尚, “触媒・蓄電池内の金属酸化物表面・界面過程の微視的理論”, 第141回フロンティア材料研究所学術講演会, 東京工業大学フロンティア材料研究所, オンライン, 2021/12/06
  4. Yoshitaka Tateyama, “DFT approaches to electron and ion transfer in battery & DFT-based studies on battery issues”, EU-Japan workshop on HPC-based material sciences, RIKEN, オンライン, 2021/11/09-10
  5. 館山佳尚, “第一原理計算”, 電気化学会関東支部第49回先端科学セミナー 電気化学のための計算化学入門, オンライン, 2021/11/08
  6. 館山佳尚, “電解質界面・電解質探索に関する計算・データ科学研究動向”, 日本化学会 第15回技術開発フォーラム:全固体電池の最新動向, オンライン, 2021/11/02
  7. Yoshitaka Tateyama, “Ion and Electron Transfer at Interfaces in Solid-state Batteries Via First-principles Calculations”, International Battery Association 2021, ハイブリッド(Xiamen, China & Zoom), 2021/10/25-29
  8. Yoshitaka Tateyama, “DFT study on interfaces in solid state battery via direct interface models”, 3rd WORLD CONFERENCE ON SOLID ELECTROLYTES FOR ADVANCED APPLICATIONS: GARNETS AND COMPETITORS, オンライン, 2021/10/25-27
  9. Yoshitaka Tateyama, “Microscopic Electrochemistry of Ion Transport at Heterogeneous Solid-Solid Interface in Li-Ion Battery”, IUMRS-ICA2021, ハイブリッド(Jeju, South Korea & Zoom), 2021/10/3-8
  10. 館山佳尚, “蓄電池がもたらすグリーン社会”, 応用物理学会 第155回 結晶工学分科会研究会 カーボンニュートラルに結晶工学が果たす役割- 地球温暖化問題の現状と解決に向けた最前線 -, オンライン, 2021/6/23
  11. 館山佳尚, “大規模第一原理計算による全固体電池電解質界面のイオン・電子状態解明”, 日本化学会第101春季年会 コラボレーション企画:文部科学省「富岳」成果創出加速プログラム「富岳電池課題」第1回成果報告会, オンライン, 2021/3/21
  12. 館山佳尚, “不均一系触媒反応の先進的第一原理計算研究”, 日本化学会第101春季年会 中長期テーマシンポジウム 革新的触媒の創製:光や電場などを用いた触媒反応, オンライン, 2021/3/20
  13. Yoshitaka Tateyama, “DFT calculation study on Li metal / LLZO electrolyte interfaces: stability and ion transport”, Interface IONICS online symposium 2021 Spring, Online, 2021/3/9
  14. Yoshitaka Tateyama, “DFT-based understanding of ion transfer at heterogeneous solid-solid interfaces in batteries”, CECAM Flagship Workshop: MATERIALS DESIGN FOR ENERGY STORAGE AND CONVERSION: THEORY AND EXPERIMENT, Online, 2021/3/2-5
  15. Yoshitaka Tateyama, JST e-ASIA: Materials Informatics Workshop, Online, 2021/1/13-14

2020

  1. 館山佳尚, “全固体電池材料の最新計算・データ科学研究”, 第7回電池材料解析ワークショップ, NIMS/オンライン, 2020/12/11
  2. 館山佳尚, “全固体電池開発に向けた計算・データ科学研究:富岳電池課題の取組”, 第61回電池討論会, オンライン, 2020/11/18-20
  3. 館山佳尚, 電気化学会関東支部第48回先端科学セミナー 電気化学のための計算化学入門, オンライン, 2020/11/10
  4. Yoshitaka Tateyama, “DFT Sampling Studies on Interface Ionics at Heterogeneous Solid-Solid Interfaces in Batteries”, ENGE2020, オンライン, 2020/11/01-04
  5. 館山佳尚, “次世代二次電池・燃料電池開発によるET革命に向けた計算・データ材料科学研究”, 第10回材料系ワークショップ ~「富岳」時代の物質科学シミュレーションの新展開~, オンライン, 2020/10/16
  6. Yoshitaka Tateyama, “Theoretical Analysis of Microscopic Interface Ionics at Heterogeneous Solid-Solid Interfaces in Batteries”, PRiME2020, オンライン, 2020/10/04-09
  7. 館山佳尚, “蓄電池材料・現象の先端的第一原理計算研究”, 電気化学界面シミュレーションコンソーシアム 2020年度第1回研究会, オンライン, 2020/10/02
  8. 石川敦之, “密度汎関数理論と微視的反応速度論を基礎とした触媒活性の理論的予測”, 第126回触媒討論会, オンライン, 2020/09/16-2020/09/18
  9. 館山佳尚, “不均一系触媒によるレドックス反応の理論計算解析”, 日本化学会第100春季年会, 東京理科大学野田キャンパス,野田市,2020/3/22-25
  10. 石川敦之, “第一原理計算と反応速度論による不均一系触媒反応の活性予測”, 日本化学会 第100春季年会, 東京理科大学野田キャンパス, 野田市, 2020/3/22-25
  11. 館山佳尚, “「京」コンピュータを駆使した第一原理MD法による電解液開発支援”, 第4回元素戦略シンポジウム
  12. 東京大学伊藤謝恩ホール, 文京区, 2020/02/03-2020/02/04
  13. 館山佳尚, “「京」を用いた蓄電池の計算科学研究”, 高分子同友会勉強会「新材料の創製(反応、合成、バイオ、触媒、解析、機能等)について勉強する会」(公社)高分子学会会議室, 東京都中央区, 2020/01/28

2019

  1. 館山佳尚, “第一原理酸化還元反応シミュレーション”, 第33回分子シミュレーション討論会, 名古屋市公会堂, 名古屋市, 2019/12/09-2019/12/11
  2. 館山佳尚, “エネルギー物質科学と界面イオニクス・エレクトロニクス”, 第58回玉城嘉十郎教授記念公開学術講演会, 京都大学益川ホール, 京都市, 2019/12/9
  3. Randy Jalem, “DFT and informatics approaches for finding novel solid electrolytes for all-solid-state batteries”, 29th Annual Meeting of MRS-J, Yokohama Media Business Center, Yokohama, 2019/11/27-29
  4. Atsushi Ishikawa, “Density functional theory-based microkinetic analysis of oxidative coupling of methane catalyzed by pure and lithium-doped magnesium oxide”, The 5th EMN Meeting on Computation and Theory, Labourdonnais Waterfront Hotel, Port Louis, Mauritius, 2019/11/26-30
  5. Yoshitaka Tateyama, “Computational and Theoretical Electrochemistry of Li-ion States around Electrode / Solid Electrolyte Interfaces” , 10th Asian Conference on Electrochemical Power Sources 2019 (ACEPS10), Kaohsiung Exhibition Center, Kaohsiung,
  6. 2019/11/24-27
  7. Randy Jalem, “Smart and Data-efficient Exploration of Novel Solid Electrolytes by DFT and Machine Learning”, NIMS WEEK 2019, Tokyo International Forum, Tokyo, 2019/10/30
  8. Yoshitaka Tateyama, “DFT Sampling Studies on Interface Ionics at Disordered Heterogeneous Solid-Solid Interfaces”, 2nd Asian Workshop on First-Principles Electronic structure Calculations (ASIAN-22), Osaka University Hall, Osaka, Japan, 2019/10/28-2019/10/30
  9. Yoshitaka Tateyama, “DFT studies on ionic and electronic states around electrode/solid-electrolyte interfaces via efficient structure search techniques”, 2nd World conference on Solid Electrolytes for Advanced Applications: Garnets and Competitors, Granship, Shizuoka, Japan, 2019/09/24-2019/09/27
  10. 石川敦之, “第一原理計算と反応速度論の融合による触媒活性の理論的予測”, 第124回触媒討論会, 長崎大学文教キャンパス, Nagasaki, 2019/9/18-20
  11. Yoshitaka Tateyama, “DFT sampling approach of interface and surface processes in battery and catalyst” CPMD Meeting 2019, CECAM-HQ-EPFL, Lausanne, 2019/07/22-2019/07/24
  12. 館山佳尚, “第一原理計算からみた蓄電池界面のイオン・電子状態”, 第74回固体イオニクス研究会, 東工大蔵前会館, 目黒区, 2019/07/12
  13. Randy Jalem, “Approaches and Challenges in Finding Promising Novel Solid Electrolytes for All-Solid-State Battery Application by Materials Simulations and Machine Learning Techniques”, 44th NIMS-MADIS Open Seminar Series, NIMS, Tsukuba, 2019/6/27
  14. Yoshitaka Tateyama, “DFT Studies on Li-Ions Around Electrode-Solid Electrolyte Interfaces via Efficient Structure Search Techniques”, 2019 MRS Spring Meeting and Exhibit, Phoenix Convention Center, Phoenix, 2019/04/22-2019/04/26
  15. 石川敦之, 館山佳尚, “第一原理計算と反応速度論による触媒活性および選択性の予測”, 次世代ESICBセミナー2019-1, Kyoto University Katsura Campus, Kyoto, 2019/3/8
  16. Yoshitaka Tateyama, “Theoretical Study on Redox Reactions at Boron-Doped Diamond / Water Interfaces”, JST-ACCEL symposium “Fundamentals and Applications of Diamond Electrodes”, Keio University Hiyoshi Campus, Yokohama, Japan, 2019/03/06
  17. Randy Jalem, “Computational battery materials research by DFT and data science techniques”, 34th Computational Materials Design (CMD) Workshop, Graduate School of Engineering Science, Osaka, 2019/2/22
  18. Yoshitaka Tateyama, “First -principles sampling simulation approaches to battery science and thechnology”, The 1st R-CCS International Symposium, Kobe Convention Center, Kobe, Japan, 2019/02/18-2019/02/19
  19. Yoshitaka Tateyama, “DFT sampling approaches to microscopic interfacial processes in batteries and catalysts” Computational Sciences Workshop 2019 (CSW2019), Tokyo, 2019/01/16-2019/01/18

2018

  1. Randy Jalem, “All-Solid-State Battery Materials Search Using Materials Simulations and Bayesian Optimization (材料シミュレーションとベイズ最適化を用いた全固体電池材料の探索)”, Computer Simulation of Energy (CSE) 5th Open Symposium, 北海道大学フロンティア化学教育研究センター, Sapporo, 2018/12/12
  2. 館山佳尚, “電池界面イオニクスに関する第一原理統計サンプリング研究”, 2018年日本表面真空学会学術講演会, 神戸国際会議場, 2018/11/19-2018/11/21
  3. Yoshitaka Tateyama, “DFT Sampling Calculation Studies on Electrode / Electrolyte Interfaces in Li Ion Batteries”, 12th Japan-France Joint Seminar on Batteries, Nagaragawa International Conference Center, Gifu, 2018/09/19-2018/09/21
  4. Randy Jalem, “Insights from Computational Modeling and Experiment on the Ionic Diffusion and Electrochemical Stability of Garnet-Type Oxide Electrolytes for All-Solid-State Lithium Ion Batteries”, 12th Japan-France Battery Seminar, Nagaragawa International Conference Center, Gifu, 2018/9/19-21
  5. Yoshitak Tateyama, “Interfacial ionics and electronics in battery and catalyst”, Simulations (and theory) in Physical chemistRy: an International Kermesse in Paris, Ecole Normale Superieure, Paris, France, 2018/05/28 – 29
  6. Randy Jalem, “Insights from Computational Modeling and Experiments on the Li-Ion Dynamics and Electrochemical Stability of Garnet-Based Solid Electrolytes”, 233rd ECS Meeting, Washington State Convention Center, Seattle, USA, 2018/5/13-17
  7. Yoshitak Tateyama, J. Haruyama, K. Sodeyama, “First-Principles Study on the Microscopic Origin of Interfacial Resistance between Oxide Cathode and Sulfide Electrolyte in All Solid State Battery”, 2018 MRS Spring meeting & Exhibit (EN01 symposium), Phoenix Convention Center, Phoenix, AZ, USA, 2018/04/02-06
  8. Keitaro Sodeyama, Yoshitak Tateyama, “DFT-MD study on interfacial ion transport between graphite anode and amorphous lithium carbonate”, 2018 MRS Spring meeting & Exhibit (EN01 symposium), Phoenix Convention Center, Phoenix, AZ, USA, 2018/04/02-06

2016~2017

  • Yoshitaka Tateyama, “DFT molecular dynamics sampling studies on battery phenomena and materials on the atomic-scale”, 4th International Conference on Advanced Electromaterials, Ramada Plaza Hotel Jeju, Jeju, Korea, 2017/11/21-24
  • Yoshitaka Tateyama, “Solid-Liquid and Solid-Solid Interfaces in Batteries and Catalysts: Computational Explorations”, 8th International Symposium on Surface Science, EPOCHAL, Tsukuba, Japan, 2017/10/23-26
  • Yoshitaka Tateyama, “DFT molecular dynamics studies on battery materials – SEI film and superconcentrated electrolyte” 6th Polish Forum Smart Energy Conversion & Storage, Hotel Bukovina, Poland, 2017/09/03-06
  • Yoshitaka Tateyama, “DFT sampling calculation studies on interfacial phenomena in Li-ion batteries”IUMRS-ICAM2017, Yoshida Campus, Kyoto University, Kyoto, Japan, 2017/08/28-09/01
  • 館山佳尚、”第一原理計算で界面の酸化還元・酸塩基過程を探る”, 第38回触媒学会若手会「夏の研修会」, KKRホテルびわこ, 2017/08/02-2017/08/04
  • Yoshitaka Tateyama, “Brute-Force First-Principles Sampling Investigations of Battery Electrolytes and Interfaces”, Materials research by Information Integration” Initiative (MI2I) Workshop, NIMS, 2017/07/27
  • Yoshitaka Tateyama, “DFT molecular dynamics studies on battery materials: SEI film and superconcentrated electrolyte”, FiMPART2017, Bordeaux Convention Centre, Bordeaux, France, 2017/07/09-12
  • 館山佳尚, “計算科学技術による蓄電池機構解明・材料設計”, 日本化学会第97春季年会, 慶応義塾大学日吉キャンパス, 2017/3/16-19
  • 館山佳尚, “stat-CPMDを用いた リチウムイオン電池界面被膜に関する第一原理計算研究”, 重点課題⑤「エネルギーの高効率な創出,変換・貯蔵,利用の新規基盤技術の開発」 第3回公開シンポジウム, 東京大学武田ホール, 2016/12/15-16
  • Yoshitaka Tateyama, “DFT molecular dynamics studies on battery materials: SEI film and superconcentrated electrolyte”, IWAMSN2016, Grand Halong Hotel, Ha Long Bay, Vietnam, 2016/11/08-12
  • Yoshitaka Tateyama, “Surface termination & ion migration of perovskite materials for carrier transport and aging”, ENGE2016, Ramada Plaza Hotel Jeju, Jeju, Korea, 2016/11/06-09
  • 館山佳尚, “二次電池電解液・電極界面の計算材料科学”, 日本物理学会2016年秋季大会, 金沢大学, 金沢市, 石川県, 2016/09/13–2016/09/16
  • Yoshitaka Tateyama, “Ab-initio MD simulations of redox reactions of liquid electrolytes and SEI formation”, IMLB2016 (18th International Meeting on Lithium Batteries), Hyatt Regency Chicago, Chicago, USA, 2016/06/19 – 2016/06/24
  • 館山佳尚, “スパコンを用いた二次電池電解液・電極界面の微視的機構研究”, 第381回電池技術委員会, 横浜国立大学教育文化ホール, 横浜市, 2016/06/17
  • Yoshitaka Tateyama, “Car-Parrinello MD studies on batteries: SEI film formation and superconcentrated electrolyte”, CPMD2016 Conference, University of Chicago, Chicago, USA, 2016/05/18-20
  • Yoshitaka Tateyama, “Theoretical study on surface and ion migration of perovskite materials in Perovskite Solar Cell (PSC)”, MANA International Symposium 2016, Epochal Tsukuba, Tsukuba, Japan, 2016/03/09 – 2016/03/11
  • Yoshitaka Tateyama, “DFT samplings reveal atomistic mechanisms around electrolyte-electrode interfaces in batteries”, Japanese Swiss Energy Materials Workshop, EMPA, Dubendorf, Switzerland, 2016/03/07-09
  • 館山佳尚, “電極界面における電解液反応シミュレーション 〜リチウムイオン2次電池の安全性・機能性向上に向けて〜”, 文部科学省 元素戦略プロジェクト<研究拠点形成型>/大型研究施設 連携シンポジウム(第2回), 東京大学伊藤国際学術研究センター, 2016/01/22
  • 館山佳尚, “二次電池内プロセスに関する第一原理計算研究の展開”, TCCI第5回産学連携シンポジウム, 東京大学武田先端知ビル 武田ホール, 2016/01/19

~2015

  • Yoshitaka Tateyama,“Elucidation of complicated reactions around electrolyte – electrode interfaces in Li-ion battery”, Pacifichem2015, Hawaii Convention Center, Honolulu, USA, 2015/12/15 – 2015/12/20
  • Yoshitaka Tateyama,“Semiconductor-water interfaces investigated by first principles calculations of boron doped diamond”, Pacifichem2015, Hawaii Convention Center, Honolulu, USA, 2015/12/15-20
  • 館山佳尚, “固液界面反応に関する第一原理計算アプローチ:現状と展望”, 第6回真空・表面科学若手研究会, NIMS, つくば市, 2015/12/4
  • 館山佳尚, “第一原理計算に基づく表面・界面の計算科学”, 関西接着ワークショップ 2015年度 第2回研究会, 大阪市立工業研究所, 2015/10/14
  • Yoshitaka Tateyama,“DFT-MD Study on Formation Processes of Solid Electrolyte Interphase at Negative Electrode Interfaces in Lithium-Ion Battery”, The 66th Annual Meeting of the International Society of Electrochemistry (ISE), Taipei International Convention Center, Taipei, Taiwan, 2015/10/04 – 09
  • 館山佳尚, “固液界面酸化還元反応の第一原理計算解析”, 電気化学界面シミュレーションコンソーシアム, 秋葉原ダイビル, 2015/09/29
  • Yoshitaka Tateyama,“Lithium space-charge layer at interfaces between oxide cathode and sulfide electrolyte for interfacial resistance in all solid state lithium ion battery: A DFT simulation study”, The 11th Pacific Rim Conference of Ceramic Societies (PACRIM11), ICC Jeju, Jeju, Korea, 2015/08/30 – 09/04
  • Yoshitaka Tateyama, “Surface termination & ion migration of perovskite materials”, CECAM workshop: Perovskite solar cells: the quest for a theoretical description, CECAM, EPFL, Lausanne, Switzerland, 2015/08/25
  • 館山佳尚, “固液界面・酸化還元・電気化学反応の第一原理計算, 第55回分子科学若手の会夏の学校, 東京大学本郷キャンパス理学部化学本館, 2015/08/17–2015/08/21
  • Yoshitaka Tateyama, “スーパーコンピュータによるリチウムイオン電池反応機構研究 “(domestic), The 1st symposium of Post-K supercomputer project No.5, 10 March 2015, IMS, Okazaki, Japan
  • Yoshitaka Tateyama, “Novel reaction mechanism of Lithium-ion battery electrolyte by DFT free energy calculation with parallel blue-moon ensemble on K computer”, International Symposium on Computics: Quantum Simulation and Design (ISC-QSD2014), 1-3 December 2015, The Univ. of Tokyo, Japan.
  • Yoshitaka Tateyama, “「京」で革新するエネルギー創成”(Domestic), RIKEN-AICS Press conference, 15 October 2014, RIKEN, Kobe, Japan
  • Yoshitaka Tateyama, “Theoretical Study on Reactions in Electrolyte and at Electrode-Electrolyte Interface in Lithium Ion Battery”, The 10th Japan-France Joint Seminar on Battery, 22-24 September 2014, Hakone.
  • Yoshitaka Tateyama,”DFT-MD Simulations Reveal Novel Reaction Mechanisms of Electrolyte toward SEI formation in LIB”, The 3rd TYC Energy Materials Workshop, 10-12 September 2014, University College London, London, UK.
  • Yoshitaka Tateyama “Additive effect on initial stage of solid electrolyte interphase (SEI) formation in lithium ion battery”, The 248th ACS National Meeting & Exposition, 10-14 August 2014, San Francisco, CA, USA.
  • Yoshitaka Tateyama, “DFT Simulation Study on Reactions in Electrolyte and at Electrode-Electrolyte Interface in Lithium Ion Battery”, The Eighth International Conference on the Science and Technology for Advanced Ceramics (STAC8), 25-27 June 2014, Yokohama, Japan.
  • Yoshitaka Tateyama, “Theoretical study on structures and electronic states of boron-doped diamond (BDD) electrode/water interfaces” International Symposium on Diamond Electrochemistry, 18-19 March 2014, Keio University, Yokohama, Japan
  • Yoshitaka Tateyama, “Novel mechanism of reductive decomposition of electrolyte in LIB: A DFT free energy analysis on K(京) computer” MANA International Symposium 2014, 5-7 March 2014, Epochal Tsukuba, Tsukuba, Japan
  • Yoshitaka Tateyama, “Additive effect on reductive decomposition and binding of carbonate-based electrolyte in Lithium ion battery: A DFT free energy analysis” TNT Japan 2014, 29-31 January 2014, Tokyo Big Sight, Koto-ku, Tokyo, Japan.
  • Yoshitaka Tateyama, “DFT-MD Analysis of Redox Reaction at Sollid-Electrolyte Interface in Battery and Solar Cell” The 16th Asian Workshop on First-Principles Electronic Structure Calculations (Asian-16) 28-30 October 2013, Jiuhua Resort & Convention Center VIP building, Beijing, China.
  • Yoshitaka Tateyama, “DFT-MD Analysis of Redox Reactions at TiO2/Solution Interfaces in Photocatalysis and Dye-Sensitized Solar Cell” German-Japanese International Workshop“structure and control of interfaces, 08-10 January 2013, Magnus House (DPG), Berlin, Germany
  • Yoshitaka Tateyama, “DFT approaches to semiconductor/oxide-solution interfaces for catalysts and solar cells”, MASP 2012, 23 June-13 July 2012, ISSP, The University of Tokyo, Kashiwa, Chiba, Japan

講演・ポスターリスト

2020

TBA

2019

  • [Poster] Bo Gao, Randy Jalem, Yanming Ma, Yoshitaka Tateyama, “Microscope mechanism of Li-ion transport at Interfaces between LiCoO2 Cathode and Sulfide Electrolyte in All-Solid-State Battery via DFT-CALYPSO Method”, Materials research meeting 2019, MRS-Japan, Yokohama symposia, Yokohama, 2019/12/10-2019/12/14
  • [Oral] Bo Gao, Randy Jalem, Yanming Ma, Yoshitaka Tateyama, “Structure Search and Property Analysis of Interfaces between Cathode and Solid Electrolyte in All-Solid-State Battery via DFT-CALYPSO Method”, The 10th Asian Conference on Electrochemical Power Sources 2019, The organizing committee of ACEPS-10, Kaohsiung Exhibition Center, Kaohsiung, Taiwan, 2019/11/24-2019/11/27
  • [Poster] Bo Gao, Randy Jalem, Yanming Ma, Yoshitaka Tateyama, “Structure Search and Property Analysis of Interfaces between Cathode and Solid Electrolyte in All-Solid-State Battery via DFT-CALYPSO Method”, The 22nd Asian Workshop on First-Principles Electronic Structure Calculations, The organizing committee of Asian-22, Osaka University Hall, Osaka, Japan, 2019/10/28-2019/10/30
  • [Poster] Atsushi Ishikawa and Yoshitaka Tateyama, “The Oxidative Coupling of Methane Catalyzed by MgO; A First-Principle Based Microkinetics and Ab-initio Molecular Dynamics Study”, Asian-22, Osaka University, Osaka, 2019/10/28-2019/10/30
  • [Poster] Yong Youn, Miso Lee, Changho Hong, Doyeon Kim, Kanghoon Yim, Yoshitaka Tateyama, “AMP2: A Package for Automated Ab-initio Calculation for Crystalline Materials”, The 22nd Asian Workshop on First-Principles Electronic structure Calculation, Asian-22, Osaka University Hall, Osaka, 2019/10/28-2019/10/30
  • [Poster] Xichan Gao, Yoshitaka Tateyama, Kazuto Akagi, “Force Field Parameterization using Genetic Algorithm for Lithium-Ion Battery Applications”, The 22nd Asian Workshop on First-Principles Electronic Structure Calculations, Osaka University, Osaka, 2019/10/28-2019/10/30
  • [Poster] Xichan Gao, Yoshitaka Tateyama, Kazuto Akagi, “Genetic Algorithm Based Force Field Parameterization for Lithium-Ion Battery Applications”, 計算物質科学人材育成コンソーシアム(PCoMS)シンポジウム, 計算物質科学人材育成コンソーシアム(PCoMS), Tohoku University, Sendai, 2019/10/24-2019/10/25
  • [Poster] Bo Gao, Randy Jalem, Yoshitaka Tateyama, “Atomic-scale insight into surface morphology and stability of interface between garnet Li7La3Zr2O12 and Li metal from first principles”, 2nd World Conference on Solid Electrolytes for Advanced Applications: Garnets and Competitors (Garnet2019), Organizing Committee of Garnet 2019, Shizuoka Convention & Arts Center, Shizuoka, 2019/09/24-2019/09/27
  • [Oral] Atsushi Ishikawa and Yoshitaka Tateyama, “Density Functional Theory-Based Microkinetic Analysis of Oxidative Coupling of Methane Catalyzed by Pure and Lithium-Doped Magnesium Oxide”, EuropaCat2019, Dechema, Eurogress Aahen, Germany, 2019/08/18-2019/08/23
  • [Oral] Atsushi Ishikawa and Yoshitaka Tateyama, “Density functional theory-based microkinetic analysis of oxidative coupling of methane catalyzed by pure and lithium-doped magnesium oxide” APCAT-8, Central Grand and Bangkok Conference Center, Bangkok, Thailand, 2019/08/04-2019/08/07
  • [Poster] Ashu Choudhary, Keitaro Sodeyama, Yoshitaka Tateyama, “Effects of Magnesium-Organo-Haloaluminate complex in Magnesium Ion Battery electrolytes: A Car-Parrinello Molecular Dynamics (CPMD) Study”, CPMD Meeting 2019 – Pushing the Boundaries of Molecular Dynamics, CECAM Hedquarters, Lausanne, Switzerland, 2019/07/22-2019/07/24
  • [Oral] Bo Gao, Randy Jalem, Yanming Ma, Yoshitaka Tateyama, “Structure Search and Property Analysis of Interfaces between Cathode and Solid Electrolyte in All-Solid-State Battery via DFT-CALYPSO Method”, The eleventh International Conference on the Science and Technology for Advanced Ceramics (STAC-11), Organization Committee of STAC-11, Tsukuba International Congress Center, Tsukuba, 2019/07/09-2019/07/11
  • [Oral] Atsushi Ishikawa, Yoshitaka Tateyama, “NO + CO Reaction on Rh Surface: DFT Investigation Combined with Microkinetic Analysis”, Spring 2019 ACS National Meeting, American chemical society, Orange County Convention Center, Orland, Florida, USA, 2019/03/30-2019/04/04
  • [Poster] 石川敦之, 館山佳尚, “第一原理計算と微視的反応速度論に基づいた理論計算によるメタン酸化カップリングの活性および選択性の理論予測”, 第123回触媒討論会, 触媒学会, Osaka city University, Osaka, 2019/03/20-2019/03/21
  • [Oral] Bo Gao, Randy Jalem, Yanming Ma, Yoshitaka Tateyama, “First-principles study on electrode – solid electrolyte interfaces in solid-state battery via efficient structure prediction method”, APS March Meeting 2019, American Physical Society, Boston Convention and Exhibition Center (BCEC), Boston, United States, 2019/03/04-2019/03/08

2024

  1. Zizhen Zhou*, Huu Duc Luong, Bo Gao, Toshiyuki Momma, Yoshitaka Tateyama*, ACS Appl. Mater. Interfaces 16, 42093-42099 (2024). “LiNbO3 and LiTaO3 Coating Effects on the Interface of the LiCoO2 Cathode: A DFT Study of Li-Ion Transport” DOI: 10.1021/acsami.4c05737
  2. Seong-Hoon Jang*, Randy Jalem, Yoshitaka Tateyama, J. Mater. Chem. A 12, 20879-20886 (2024). “Computational discovery of stable Na-ion sulfide solid electrolytes with high conductivity at room temperature” DOI: 10.1039/d4ta02522a
  3. Qianli Si, Shoichi Matsuda, Youhei Yamaji, Toshiyuki Momma, Yoshitaka Tateyama*, Adv. Sci. (2024).”Data-Driven Cycle Life Prediction of Lithium Metal-Based Rechargeable Battery Based on Discharge/Charge Capacity and Relaxation Features” DOI: 10.1002/advs.202402608
  4. Itsuki Konuma, Naohiro Ikeda, Benoît D.L. Campéon, Hinata Fujimura, Jun Kikkawa, Huu Duc Luong, Yoshitaka Tateyama, Yosuke Ugata, Masao Yonemura, Toru Ishigaki, Taira Aida, Naoaki Yabuuchi*, Energy Storage Mater. 55, 103200 (2024). ” Unified understanding and mitigation of detrimental phase transition in cobalt-free LiNiO2″ DOI: 10.1016/j.ensm.2024.103200

2023

  1. Zizhen Zhou, Claudio Cazorla, Bo Gao, Huu Duc Luong, Toshiyuki Momma, Yoshitaka Tateyama*, ACS Appl. Mater. Interfaces  (2023). “First-Principles Study on the Interplay of Strain and State-of-Charge with Li-Ion Diffusion in the Battery Cathode Material LiCoO2” DOI: 10.1021/acsami.3c14444
  2. Wenchong Zhou, Chenchao Xu, Bo Gao, Masanobu Nakayama, Shunsuke Yagi, Yoshitaka Tateyama*, ACS Energy Lett. 8, 4113-4118 (2023). ” Glyme Solvent Decomposition on Spinel Cathode Surface in Magnesium Battery” DOI: 10.1021/acsenergylett.3c01084
  3. Randy Jalem*, Yoshitaka Tateyama, Kazunori Takada, Seong-Hoon Jang, J. Phys. Chem. C 127, 17307-17323 (2023). “Multi-objective solid electrolyte design of tetragonal and cubic inverse-perovskites for all-solid-state lithium-ion batteries by high-throughput DFT calculations and AI-driven methods” DOI: 10.1021/acs.jpcc.3c02801
  4. Masahito Ikeda, Randy Jalem*, Gen Hasegawa, Naoaki Kuwata, Qiumin Liu, Takafumi Yamamoto, Kei Shigematsu, Yoshitaka Tateyama, Masaki Azuma*, J. Phys. Chem. C 127, 14117-14124 (2023). “Theoretical Prediction and High-Pressure Synthesis of New LISICON-Type Solid-State Electrolyte Li2.75[B0.625P0.125S0.25]O3.375” DOI: 10.1021/acs.jpcc.3c02842
  5. Yoshitaka Tateyama*, Akiko Kagatsume, Masaru Yao, Shoichi Matsuda, Kohei Uosaki, J. Phys. Chem. C 127, 12867-12873 (2023). “Exploration of Organic Cathode Active Materials with High Energy Densities for Li-Ion Batteries via First-Principles Calculations” DOI: 10.1021/acs.jpcc.3c02131
  6. Seong-Hoon Jang*, Randy Jalem*, Yoshitaka Tateyama, J. Phys. Chem. A 127, 5734-5744 (2023). “EwaldSolidSolution: A High-Throughput Application to Quickly Sample Stable Site Arrangements for Ionic Solid Solutions” DOI: 10.1021/acs.jpca.3c00076
  7. Toshihiko Mandai*, Masaru Yao, Keitaro Sodeyama, Akiko Kagatsume, Yoshitaka Tateyama, Hiroaki Imai, J. Phys. Chem. C 127, 10419-10433 (2023). “Toward Improved Anodic Stability of Ether-Based Electrolytes for Rechargeable Magnesium Batteries” DOI: 10.1021/acs.jpcc.3c01452
  8. Ryoma Sasaki*, Bo Gao, Taro Hitosugi, Yoshitaka Tateyama*, npj Comput. Mater. 9, 48 (2023). “Nonequilibrium molecular dynamics for accelerated computation of ion–ion correlated conductivity beyond Nernst–Einstein limitation”
    DOI: 10.1038/s41524-023-00996-8
  9. Huu Duc Luong, Chenchao Xu, Randy Jalem, Yoshitaka Tateyama*, J. Power Sources 569, 232969 (2023). “Evaluation of battery positive-electrode performance with simultaneous ab-initio calculations of both electronic and ionic conductivities”
    DOI: 10.1016/j.jpowsour.2023.232969
  10. F.A. Vasquez, N.C. Rosero-Navarro*, R. Jalem*, A. Miura, Y. Goto, Y. Tateyama, J.A. Calderon*, K. Tadanaga, Appl. Mater. Today 30, 101697 (2023). “Microwave assisted preparation of LiFePO4/C coated LiMn1.6Ni0.4O4 for Li-ion batteries with superior electrochemical properties”
    DOI: 10.1016/j.apmt.2022.101697

2022

  1. Seong-Hoon Jang, Yoshitaka Tateyama, Randy Jalem*, Adv. Funct. Mater. 32, 2206036 (2022). “High-Throughput Data-Driven Prediction of Stable High-Performance Na-Ion Sulfide Solid Electrolytes”
    DOI: 10.1002/adfm.202206036
  2. Zizhen Zhou*, Dewei Chu, Bo Gao, Toshiyuki Momma, Yoshitaka Tateyama, Claudio Cazorla*, ACS Appl. Mater. Interfaces 14, 37009-37018 (2022). “Tuning the Electronic, Ion Transport, and Stability Properties of Li-rich Manganese-based Oxide Materials with Oxide Perovskite Coatings: A First-Principles Computational Study”
    DOI: 10.1021/acsami.2c07560
  3. Atsushi Ishikawa*, Fumiya Murase, Yoshitaka Tateyama, Junichiro Otomo*, ACS Omega 7, 26107-26115 (2022). “Favorable Role of the Metal–Support Perimeter Region in Electrochemical NH3 Synthesis: A Density Functional Theory Study on Ru/BaCeO3”
    DOI: 10.1021/acsomega.2c01222
  4. Bo Gao*, Randy Jalem, Yoshitaka Tateyama*, J. Mater. Chem. A, 10, 10083-10091 (2022). “Atomistic insight into the dopant impacts at the garnet Li7La3Zr2O12 solid electrolyte grain boundaries”
    DOI: 10.1039/d2ta00545j
  5. Shunsuke Muto*, Yuta Yamamoto, Miyuki Sakakura, Hong-Kang Tian, Yoshitaka Tateyama, Yasutoshi Iriyama, ACS Appl. Energy Mater. 5, 98–107 (2022). “STEM-EELS spectrum imaging of aerosol-deposited NASICON-type LATP solid electrolyte and LCO cathode interface”
    DOI: 10.1021/acsaem.1c02512
  6. Bo Gao*, Randy Jalem, Hong-Kang Tian, Yoshitaka Tateyama*, Adv. Energy Mater. 12, 2102151 (2022). “Revealing Atomic-Scale Ionic Stability and Transport around Grain Boundaries of Garnet Li7La3Zr2O12 Solid Electrolyte”
    DOI: 10.1002/aenm.202102151
  7. Randy Jalem*, Bo Gao, Hong-Kang Tian, Yoshitaka Tateyama*, J. Mater. Chem. A 10, 2235-2248 (2022). “Theoretical study on stability and ion transport property with halide doping of Na3SbS4 electrolyte for all-solid-state batteries” (Front Cover)
    DOI: 10.1039/D1TA07292G
  8. Shigeki Kawai*, Atsushi Ishikawa*, Shinichiro Ishida, Takuya Yamakado, Yujing Ma, Sun Kewei, Yoshitaka Tateyama, Rémy Pawlak, Ernst Meyer, Shohei Saito*, Atsuhiro Osuka, Angew. Chem. Int. Ed. 134, e202114697 (2022). “On-Surface Synthesis of Multi-Block Co-Oligomers by Defluorinative Coupling of CF3-Substituted Aromatic Systems”
    DOI: 10.1002/ange.202114697

2021

  1. Shogo Wakazaki, Qiumin Liu, Randy Jalem, Takumi Nishikubo, Yuki Sakai, Naoki Matsui, Guowei Zhao, Kota Suzuki, Kei Shigematsu, Takafumi Yamamoto, Ryoji Kanno, Hena Das, Yoshitaka Tateyama, and Masaki Azuma*, Chem. Mater. 33, 9194–9201 (2021). “High-Pressure Synthesis and Lithium-Ion Conduction of Li4OBr2 Derivatives with a Layered Inverse-Perovskite Structure”
    DOI: 10.1021/acs.chemmater.1c02713
  2. Shisheng Li, Yung-Chang Lin, Jinhua Hong, Bo Gao, Hong En Lim, Xu Yang, Yoshitaka Tateyama, Kazuhiro Tsukagoshi, Yoshiki Sakuma, Kazu Suenaga, Takaaki Taniguchi, Chem. Mater. 33, 7301-7308 (2021). “Mixed-Salt Enhanced Chemical Vapor Deposition of Two-Dimensional Transition Metal Dichalcogenides”
    DOI: 10.1021/acs.chemmater.1c01652
  3. Kazuhiro Nawa*, Yoshinori Imai, Youhei Yamaji, Hideyuki Fujihara, Wakana Yamada, Ryotaro Takahashi, Takumi Hiraoka, Masato Hagihala, Shuki Torii, Takuya Aoyama, Takamasa Ohashi, Yasuhiro Shimizu, Hirotada Gotou, Masayuki Itoh, Kenya Ohgushi, Taku J. Sato, J. Phys. Soc. Jpn. 90, 123703 (2021). “Strongly Electron-Correlated Semimetal RuI3 with a Layered Honeycomb Structure”
    DOI: 10.7566/JPSJ.90.123703
  4. Youhei Yamaji*,Teppei Yoshida,Atsushi Fujimori, Masatoshi Imada, Phys. Rev. Research 3, 04309 (2021). “Hidden self-energies as origin of cuprate superconductivity revealed by machine learning”
    DOI: 10.1103/PhysRevResearch.3.043099
    NIMS Press release
  5. Maxime Charlebois, Jean-Baptiste Morée, Kazuma Nakamura*, Yusuke Nomura, Terumasa Tadano, Yoshihide Yoshimoto, Youhei Yamaji, Takumi Hasegawa, Kazuyuki Matsuhira, Masatoshi Imada, Phys. Rev. B 104, 075153 (2021). Ab initio derivation of low-energy Hamiltonians for systems with strong spin-orbit interaction: Application to Ca5Ir3O12″
    DOI: 10.1103/PhysRevB.104.075153
  6. Francesca Celine I. Catalan, Le The Anh, Junepyo Oh, Emiko Kazuma, Norihiko Hayazawa, Norihito Ikemiya, Naoki Kamoshida, Yoshitaka Tateyama, Yasuaki Einaga, Yousoo Kim*, Adv. Mater. 33, 2103250 (2021). “Localized Graphitization on Diamond Surface as a Manifestation of Dopants”
    DOI: 10.1002/adma.202103250
  7. Toshihiko Mandai*, Yong Youn, Yoshitaka Tateyama, Mater. Adv. 2, 6283-6296 (2021). “Remarkable Electrochemical and Ion-Transport Characteristics of Magnesium-Fluorinated Alkoxyaluminate–Diglyme Electrolytes for Magnesium Batteries”
    DOI: 10.1039/D1MA00448D
  8. Le The Anh, Francesca Celine I. Catalan, Yousoo Kim, Yasuaki Einaga, Yoshitaka Tateyama*, Phys. Chem. Chem. Phys. 23, 15628-15634 (2021). “Boron position-dependent surface reconstruction and electronic states of boron-doped diamond(111) surfaces: an ab initio study”
    DOI: 10.1039/d1cp00689d
  9. Ryoma Sasaki*, Makoto Moriya, Yuki Watanabe, Kazunori Nishio, Taro Hitosugi, Yoshitaka Tateyama*, J. Mater. Chem. A 9, 14897-14903 (2021). “Peculiarly fast Li-ion conduction mechanism in a succinonitrile-based molecular crystal electrolyte: a molecular dynamics study”
    DOI: 10.1039/D1TA02809J
  10. Randy Jalem, Yoshitaka Tateyama, Kazunori Takada, Masanobu Nakayama, Chem. Mater. 33, 5859-5871 (2021). “First-Principles DFT study on Inverse Ruddlesden-Popper Tetragonal Compounds as Solid Electrolytes for All-Solid-State Li+-Ion Batteries”
    DOI: 10.1021/acs.chemmater.1c00124
  11. Hong-Kang Tian, Randy Jalem, Masaki Matsui, Toshihiko Mandai, Hidetoshi Somekawa, Yoshitaka Tateyama*, J. Mater. Chem. A 9, 15207-15216 (2021). “Tuning the performance of a Mg negative electrode through grain boundaries and alloying toward the realization of Mg batteries”
    DOI: 10.1039/d1ta02419a
  12. Yong Youn, Bo Gao, Azusa Kamiyama, Kei Kubota, Shinichi Komaba, Yoshitaka Tateyama*, npj Comput. Mater. 7, 48 (2021). “Nanometer-size Na cluster formation in micropore of hard carbon as origin of higher-capacity Na-ion battery”
    DOI: 10.1038/s41524-021-00515-7
  13. Shisheng Li, Jinhua Hong, Bo Gao, Yung-Chang Lin, Hong En Lim, Xueyi Lu, Jing Wu, Song Liu, Yoshitaka Tateyama, Yoshiki Sakuma, Kazuhito Tsukagoshi, Kazu Suenaga and Taniguchi Takaaki, Adv. Sci. 8, 2004438 (2021). “Tunable Doping of Rhenium and Vanadium into Transition Metal Dichalcogenides for Two-Dimensional Electronics”
    DOI: 10.1002/advs.202004438
  14. F. A. Vásquez, N.C. Rosero-Navarro*, A. Miura, R. Jalem*, Y. Goto, M. Nagao, Y. Tateyama, K. Tadanaga, J. A. Calderón*, ACS Appl. Mater. Interfaces 13, 14056-14067 (2021). “Kinetic Control of the Li0.9Mn1.6Ni0.4O4 Spinel Structure with Enhanced Electrochemical Performance”
    DOI: 10.1021/acsami.0c17886
  15. Bo Gao*, Randy Jalem, Yoshitaka Tateyama*, ACS Appl. Mater. Interfaces 13, 11765-11773 (2021). “First-principles Study of Microscopic Electrochemistry at the LiCoO2 Cathode/LiNbO3 Coating/β-Li3PS4 Solid Electrolyte Interfaces in an All-Solid-State Battery”
    DOI: 10.1021/acsami.0c19091
  16. Atsushi Ishikawa*, Yoshitaka Tateyama, ACS Catal. 11, 2691-2700 (2021). “A First-Principle Microkinetics for Homogeneous-Heterogeneous Reaction: Application to Oxidative Coupling of Methane Catalyzed by Magnesium Oxide”
    DOI: 10.1021/acscatal.0c04104
    JST Press release
  17. Yuuki Sugawara, Keigo Kamata, Atsushi Ishikawa, Yoshitaka Tateyama, Takeo Yamaguchi*, ACS Appl. Energy Mater. 4, 3057-3066 (2021). “Efficient Oxygen Evolution Electrocatalysis on CaFe2O4 and its Reaction Mechanism”
    DOI: 10.1021/acsaem.0c02710
    TITech Press release
  18. Marcela Calpa, Nataly Carolina Rosero-Navarro, Akira Miura, Randy Jalem, Yoshitaka Tateyama, Kiyoharu Tadanaga, Appl. Mater. Today 22, 100918 (2021). “Chemical stability of Li4PS4I solid electrolyte against hydrolysis”
    DOI: 10.1016/j.apmt.2020.100918
  19. Azusa Kamiyama, Kei Kubota, Daisuke Igarashi, Yong Youn, Yoshitaka Tateyama, Hideka Ando, Kazuma Gotoh, Shinichi Komaba*, Angew. Chem. Int. Ed. 60, 5114-5120 (2021). MgO‐Template Synthesis of Extremely High Capacity Hard Carbon for Na‐Ion Battery
    DOI: 10.1002/anie.202013951
  20. Atsushi Ishikawa*, Yoshitaka Tateyama, Catal. Lett. 151, 627–633 (2021). “Hybrid Functional Study of H-Abstraction from Methane by Li-Doped, Pristine and Stepped MgO(100) and MgO(110) Surface”
    DOI: 10.1007/s10562-020-03358-x

2020

  1. Feilure Tuerxun, Kentaro Yamamoto*, Toshihiko Mandai, Yoshitaka Tateyama, Koji Nakanishi, Tomoki Uchiyama, Toshiki Watanabe, Yusuke Tamenori, Kiyoshi Kanamura, Yoshiharu Uchimoto, J. Phys. Chem. C 124, 28510-28519 (2020). “Effect of Interaction among Magnesium Ions, Anion, and Solvent on Kinetics of the Magnesium Deposition Process”
    DOI: 10.1021/acs.jpcc.0c08268
  2. Hong-Kang Tian, Randy Jalem, Bo Gao, Yuta Yamamoto, Shunsuke Muto, Miyuki Sakakura, Yasutoshi Iriyama, Yoshitaka Tateyama, ACS Appl. Mater. Interfaces 12, 54752–54762 (2020). “Electron and Ion Transfer across Interfaces of the NASICON-Type LATP Solid Electrolytes with Electrodes in All-Solid-State Batteries: A Density Functional Theory Study via an Explicit Interface Model”
    DOI: 10.1021/acsami.0c16463
  3. Yukihiro Okuno, Jun Haruyama, Yoshitaka Tateyama, ACS Appl. Energy Mater. 3, 11061-11072 (2020). “Comparative Study on Sulfide and Oxide Electrolyte Interfaces with Cathodes in All-Solid-State Battery via First-Principles Calculations”
    DOI:10.1021/acsaem.0c02033
  4. Randy Jalem, Akitoshi Hayashi, Fumika Tsuji, Atsushi Sakuda, Yoshitaka Tateyama, Chem. Mater. 32, 8373-8381 (2020). “First-Principles Calculation Study of Na+ Superionic Conduction Mechanism in W- and Mo-Doped Na3SbS4 Solid Electrolytes”
    DOI: 10.1021/acs.chemmater.0c02318
  5. Kasumi Miyazaki, Norio Takenaka, Eriko Watanabe, Yuki Yamada, Yoshitaka Tateyama, Atsuo Yamada*, ACS Appl. Mater. Interfaces 12, 42734-42738 (2020). “First-Principles Study on the Cation-Dependent Electrochemical Stabilities in Li/Na/K Hydrate-Melt Electrolytes”
    DOI: 10.1021/acsami.0c10472
  6. Kota Murakami, Yuta Tanaka, Ryuya Sakai, Kenta Toko, Kazuharu Ito, Atsushi Ishikawa, Takuma Higo, Tomohiro Yabe, Shuhei Ogo, Masatoshi Ikeda, Hideaki Tsuneki, Hiromi Nakai, Yasushi Sekine, Catalysis Today 351, 119-124 (2020). “The important role of N2H formation energy for low-temperature ammonia synthesis in an electric field”
    DOI: 10.1016/j.cattod.2018.10.055
  7. Nataly Carolina Rosero-Navarro, Ryunosuke Kajiura, Randy Jalem, Yoshitaka Tateyama, Akira Miura, Kiyoharu Tadanaga, ACS Appl. Energy Mater. 3, 5533-5541 (2020). “Significant reduction in the interfacial resistance of garnet-type solid electrolyte and lithium metal by thick amorphous lithium silicate layer”
    DOI:10.1021/acsaem.0c00511
  8. Satoshi Haku, Atsushi Ishikawa, Akira Musha, Hiroyasu Nakayama, Takashi Yamamoto, Kazuya Ando, Phys. Rev. Appl. 13, 044069 (2020). “Surface Rashba-Edelstein Spin-Orbit Torque Revealed by Molecular Self-Assembly”
    DOI: 10.1103/physrevapplied.13.044069
  9. Ryuya Sakai, Kota Murakami, Yuta Mizutani, Yuta Tanaka, Sasuga Hayashi, Atsushi Ishikawa, Takuma Higo, Shuhei Ogo, Hideaki Tsuneki, Hiromi Nakai, Yasushi Sekine, ACS Omega 5, 6846-6851 (2020). “Agglomeration Suppression of a Fe-Supported Catalyst and its Utilization for Low-Temperature Ammonia Synthesis in an Electric Field”
    DOI: 10.1021/acsomega.0c00170
  10. Feilure Tuerxun, Kentaro Yamamoto, Masashi Hattori, Toshihiko Mandai, Koji Nakanishi, Ashu Choudhary, Yoshitaka Tateyama, Keitaro Sodeyama, Aiko Nakao, Tomoki Uchiyama, Masaki Matsui, Kazuki Tsuruta, Yusuke Tamenori, Kiyoshi Kanamura, Yoshiharu Uchimoto, ACS Appl. Mater. Interfaces 12, 25775-25785 (2020). “Determining Factor on the Polarization Behavior of Magnesium Deposition for Magnesium Battery Anode”
    DOI: 10.1021/acsami.0c03696
  11. Bo Gao, Randy Jalem, Yoshitaka Tateyama, ACS Appl. Mater. Interfaces 12, 16350-16358 (2020). “Surface-Dependent Stability of Interface between the Garnet Li7La3Zr2O12 and the Li Metal in the All-Solid-State Battery from First-Principles Calculations”
    DOI: 10.1021/acsami.9b23019
  12. Takeshi Baba, Keitaro Sodeyama, Yoshiumi Kawamura, Yoshitaka Tateyama, Phys. Chem. Chem. Phys. 22, 10764-10774 (2020). “Li-ion transport at the interface between a graphite anode and Li2CO3solid electrolyte interphase: ab initio molecular dynamics study”
    DOI: 10.1039/C9CP06608J
  13. Atsushi Ishikawa, Yoshitaka Tateyama, J. Phys. Chem. C 124, 6054-6062 (2020). “What Is the Active Site for the Oxidative Coupling of Methane Catalyzed by MgO? A Metadynamics-Biased Ab Initio Molecular Dynamics Study”
    DOI: 10.1021/acs.jpcc.9b09959
  14. Kota Murakami, Shuhei Ogo, Atsushi Ishikawa, Yuna Takeno, Takuma Higo, Hideaki Tsuneki, Hiromi Nakai , Yasushi Sekine, J. Chem. Phys. 152, 014707 (2020). “Heteroatom doping effects on interaction of H2O and CeO2(111) surfaces studied using density functional theory: Key roles of ionic radius and dispersion”
    DOI: 10.1063/1.5138670
  15. M. H. N. Assadi, Masashi Okubo, Atsuo Yamada, Yoshitaka Tateyama, Phys. Rev. Mater. 4, 015401 (2020). “Possible high-potential ilmenite type Na1MO3 (M = V–Ni) cathodes realized by dominant oxygen redox reaction”
    DOI: 10.1103/PhysRevMaterials.4.015401
  16. Bo Gao, Randy Jalem, Yanming Ma, Yoshitaka Tateyama, Chem. Mater. 32, 85-96 (2020). “Li+ Transport Mechanism at the Heterogeneous Cathode/Solid Electrolyte Interface in an All-Solid-State Battery via the First-Principles Structure Prediction Scheme”
    DOI: 10.1021/acs.chemmater.9b02311

2019

  1. Atsushi Ishikawa, Keitaro Sodeyama, Yasuhiko Igarashi, Tomofumi Nakayama, Yoshitaka Tateyama, Masato Okada, Phys. Chem. Chem. Phys. 21, 26339-26405 (2019). “Machine learning prediction of coordination energies for alkali group elements in battery electrolyte solvents”
    DOI: 10.1039/C9CP03679B
  2. Takao Tsuneda, Yoshitaka Tateyama, Phys. Chem. Chem. Phys. 21, 22990-22998 (2019). “On principal features of organic electrolyte molecules in lithium ion battery performance”
    DOI: 10.1039/c9cp03980e
  3. Kasumi Miyazaki, Norio Takenaka, Eriko Watanabe, Shota Iizuka, Yuki Yamada, Yoshitaka Tateyama, Atsuo Yamada, J. Phys. Chem. Lett. 10, 6301-6305 (2019). “First-Principles Study on the Peculiar Water Environment in a Hydrate-Melt Electrolyte”
    DOI: 10.1021/acs.jpclett.9b02207
  4. Kota Murakami, Yuta Tanaka, Sasuga Hayashi, Ryuya Sakai, Yudai Hisai, Yuta Mizutani, Atsushi Ishikawa, Takuma Higo, Shuhei Ogo, Jeong Gil Seo, Hideaki Tsuneki, Hiromi Nakai, Yasushi Sekine, J. Chem. Phys. 151, 064708 (2019). “Governing factors of supports of ammonia synthesis in an electric field found using density functional theory”
    DOI: 10.1063/1.5111920
  5. Takahiro Hirai, Masaki Okoshi, Atsushi Ishikawa and Hiromi Nakai, Surf. Sci. 686, 58-62 (2019). “Temperature- and pressure-dependent adsorption configuration of {NO} molecules on Rh(111) surface: A theoretical study”
    DOI: 10.1016/j.susc.2019.04.004
  6. Seongjae Ko, Yuki Yamada, Kasumi Miyazaki, Tatau Shimada, Eriko Watanabe, Yoshitaka Tateyama, Takeshi Kamiya, Tsunetoshi Honda, Jun Akikusa, Atsuo Yamada, Electrochem. Commun. 104, 106488 (2019). “Lithium-salt monohydrate melt: A stable electrolyte for aqueous lithium-ion batteries”,
    DOI: 10.1016/j.elecom.2019.106488
  7. Yoshitaka Tateyama, Bo Gao, Randy Jalem, Jun Haruyama, Curr. Opin. Electrochem. 17, 149-157 (2019). “Theoretical picture of positive electrode / solid electrolyte interface in all-solid-state battery from electrochemistry and semiconductor physics viewpoints”
    DOI: 10.1016/j.coelec.2019.06.003
  8. Chizu Yamaguchi, Keisuke Natsui, Shota Iizuka, Yoshitaka Tateyama, Yasuaki Einaga, Phys. Chem. Chem. Phys. 21, 13788 (2019). “Electrochemical properties of fluorinated boron-doped diamond electrodes via fluorine-containing plasma treatment”,
    DOI: 10.1039/c8cp07402j
  9. Atsushi Ishikawa, Yoshitaka Tateyama, J. Comp. Chem. 40, 1866-1873 (2019). “Reaction Energy Benchmarks of Hydrocarbon Combustion by Gaussian Basis and Plane Wave Basis Approaches”
    DOI: 10.1002/jcc.25838
  10. Toshihiko Mandai, Kenji Tatesaka, Kenya Soh, Hyuma Masu, Ashu Choudhary, Yoshitaka Tateyama, Ryuta Ise, Hiroaki Imai, Tetsuya Takeguchi, Kiyoshi Kanamura, Phys. Chem. Chem. Phys. 21, 12100-12111 (2019). “Modifications in coordination structure of Mg[TFSA]2-based supporting salts for high-voltage magnesium rechargeable batteries”
    DOI: 10.1039/C9CP01400D
  11. Seiji Kasahara, Taiga Ogose, Norihito Ikemiya, Takashi Yamamoto, Keisuke Natsui, Yasuyuki Yokota, Raymond A. Wong, Shota Iizuka, Nagahiro Hoshi, Yoshitaka Tateyama, Yousoo Kim, Masashi Nakamura, Yasuaki Einaga, Anal. Chem. 91, 4980–4986 (2019). “In Situ Spectroscopic Study on the Surface Hydroxylation of Diamond Electrodes”
    DOI: 10.1021/acs.analchem.8b03834
  12. Tribidasari A. Ivandini, Takeshi Watanabe, Takahiro Matsui, Yusuke Ootani, Shota Iizuka, Ryo Toyoshima, Hideyuki Kodama, Hiroshi Kondoh, Yoshitaka Tateyama, Yasuaki Einaga, J. Phys. Chem. C 123, 5336-5344 (2019). “Influence of the Surface Orientation on the Electrochemical Properties of Boron-Doped Diamond”
    DOI: 10.1021/acs.jpcc.8b10406
  13. Eriko Watanabe, Keitaro Sodeyama, Yoshitaka Tateyama, Atsuo Yamada, Chem. Rec. 19, 792-798 (2019). “Combined Theoretical and Experimental Studies of Sodium Battery Materials”
    DOI: 10.1002/tcr.201800125
  14. M. H. N. Assadi, Masashi Okubo, Atsuo Yamada, Yoshitaka Tateyama, J. Electrochem. Soc. 166, A5343-A5348 (2019). “Oxygen Redox Promoted by Na Excess and Covalency in Hexagonal and Monoclinic Na2-xRuO3 Polymorphs”
    DOI: 10.1149/2.0521903jes
  15. Yukihiro Okuno, Keisuke Ushirogata, Keitaro Sodeyama, Ganes Shukri, Yoshitaka Tateyama, J. Phys. Chem. C 123, 2267-2277 (2019). “Structures, Electronic States, and Reactions at Interfaces between LiNi0.5Mn1.5O4 Cathode and Ethylene Carbonate Electrolyte: A First-Principles Study”
    DOI: 10.1021/acs.jpcc.8b10625

2018

  1. Lucie Szabova, Matteo Farnesi Camellone, Fabio Negreiros Ribeiro, Vladimir Matolin, Yoshitaka Tateyama, Stefano Fabris, J. Phys. Chem. C 122, 27507-27515 (2018). “Dynamical Solvent Effects on the Charge and Reactivity of Ceria-Supported Pt Nanoclusters”
    DOI: 10.1021/acs.jpcc.8b09154
  2. Masanobu Nakayama, Kenta Kanamori, Koki Nakano, Randy Jalem, Ichiro Takeuchi, Hisatsugu Yamasaki, Chem. Rec. 18, 1-9 (2018). “Data-driven Materials Exploration for Li-ion Conductive Ceramics by Exhaustive and Informatics-aided Computations”
    DOI: 10.1002/tcr.201800129
  3. Masashi Hattori, Kentaro Yamamoto, Masaki Matsui, Koji Nakanishi, Toshihiko Mandai, Ashu Choudhary, Yoshitaka Tateyama, Keitaro Sodeyama, Tomoki Uchiyama, Yuki Orikasa, Yusuke Tamenori, Tasuya Takeguchi, Kiyoshi Kanamura, Yoshiharu Uchimoto, J. Phys. Chem. C 122, 25204-25210 (2018). “Role of Coordination Structure of Magnesium Ions on Charge and Discharge Behavior of Magnesium Alloy Electrode”
    DOI: 10.1021/acs.jpcc.8b08558
  4. Keitaro Sodeyama, Yasuhiko Igarashi, Tomofumi Nakayama, Yoshitaka Tateyama, Masato Okada, Phys. Chem. Chem. Phys. 20, 22585-22591 (2018). “Liquid electrolyte informatics using an exhaustive search with linear regression”
    DOI: 10.1039/c7cp08280k
  5. Hiromasa Shiiba, Nobuyuki Zettsu, Miho Yamashita, Hitoshi Onodera, Randy Jalem, Masanobu Nakayama, Katsuya Teshima, J. Phys. Chem. C 122, 21755-21762 (2018). “Molecular Dynamics Studies on the Lithium Ion Conduction Behaviors Depending on Tilted Grain Boundaries with Various Symmetries in Garnet-Type Li7La3Zr2O12”
    DOI: 10.1021/acs.jpcc.8b06275
  6. Atsushi Ishikawa, Yoshitaka Tateyama, J. Phys. Chem. C 122, 17378-17388 (2018). “First-Principles Microkinetic Analysis of NO + CO Reactions on Rh(111) Surface toward Understanding NOx Reduction Pathways”
    DOI: 10.1021/acs.jpcc.8b05906
  7. Randy Jalem, Kenta Kanamori, Ichiro Takeuchi, Masanobu Nakayama, Hisatsugu Yamasaki, Toshiya Saito, Sci. Rep. 8, 5845 (2018). “Bayesian-Driven First-Principles Calculations for Accelerating Exploration of Fast Ion Conductors for Rechargeable Battery Application”
    DOI: 10.1038/s41598-018-23852-y
  8. Randy Jalem, Masanobu Nakayama, Yusuke Noda, Tam Le, Ichiro Takeuchi, Yoshitaka Tateyama, Hisatsugu Yamazaki, Sci. Tech. Adv. Mater.19, 231-242 (2018). “A General Representation Scheme for Crystalline Solids based on Voronoi-Tessellation Real Feature Values and Atomic Property Data”
    DOI: 10.1080/14686996.2018.1439253
  9. Randy Jalem, Japan engineering & technology intelligence 66, 33-40 (2018). “DFT計算とベイズ最適化を組み合わせた全個体電池用高速イオン伝導体材料の効率的探索”
    https://www.jstage.jst.go.jp/article/jsaeronbun/50/3/50_20194340/_pdf
  10. Filip Dvořák, Lucie Szabová, Viktor Johánek, Matteo Farnesi Camellone, Vitalii Stetsovych, Mykhailo Vorokhta, Andrii Tovt, Tomáš Skála, Iva Matolínová, Yoshitaka Tateyama, Josef Mysliveček, Stefano Fabris, Vladimír Matolín, ACS Catal. 8, 4354-4363 (2018). “Bulk Hydroxylation and Effective Water Splitting by Highly Reduced Cerium Oxide: The Role of O Vacancy Coordination”
    DOI: 10.1021/acscatal.7b04409
  11. M. H. N. Assadi, Masashi Okubo, Atsuo Yamada, Yoshitaka Tateyama*, J. Mater. Chem. A 6, 3747-3753 (2018). “Oxygen redox in hexagonal layered NaxTMO3 (TM =4d elements) for high capacity Na ion batteries”
    DOI: 10.1039/C7TA10826E
  12. Jianhui Wang, Yuki Yamada, Keitaro Sodeyama, Eriko Watanabe, Koji Takada, Yoshitaka Tateyama, Atsuo Yamada*, Nat. Energy 3, 22-29 (2018). “Fire-extinguishing organic electrolytes for safe batteries”
    DOI: 10.1038/s41560-017-0033-8
  13. Shuhei Ogo, Hideaki Nakatsubo, Kousei Iwasaki, Ayaka Sato, Kota Murakami, Tomohiro Yabe, Atsushi Ishikawa, Hiromi Nakai, Yasushi Sekine, J. Phys. Chem. C 122, 2089-2096 (2018). “Electron-Hopping Brings Lattice Strain and High Catalytic Activity in the Low-Temperature Oxidative Coupling of Methane in an Electric Field”
    DOI: 10.1021/acs.jpcc.7b08994

2017

  1. Jun Haruyama*, Keitato Sodeyama, Ikutaro Hamada, Liyuan Han, Yoshitaka Tateyama*, J. Phys. Chem. Lett. 8, 5840-5847 (2017). “First-Principles Study of Electron Injection and Defects at the TiO2/ CH3NH3PbI3 Interface of Perovskite Solar Cells”
    DOI: 10.1021/acs.jpclett.7b02622
  2. Seiji Kasahara, Keisuke Natsui, Takeshi Watanabe, Yasuyuki Yokota, Yousoo Kim, Shota Iizuka, Yoshitaka Tateyama, Yasuaki Einaga, Anal. Chem. 89, 11341-11347 (2017). “Surface Hydrogenation of Boron-Doped Diamond Electrodes by Cathodic Reduction”
    DOI: 10.1021/acs.analchem.7b02129
  3. Koji Takada, Yuki Yamada, Eriko Watanabe, Wang Jianhui, Keitaro Sodeyama, Yoshitaka Tateyama, Kazuhisa Hirata, Takeo Kawase, Atsuo Yamada, ACS Appl. Mater. Interfaces 9, 33802-33809 (2017). “Unusual Passivation Ability of Superconcentrated Electrolytes toward Hard Carbon Negative Electrodes in Sodium-Ion Batteries”
    DOI: 10.1021/acsami.7b08414
  4. Makito Takagi, Tetsuya Taketsugu, Hiori Kino, Yoshitaka Tateyama, Kiyoyuki Terakura, Satoshi Maeda, Phys. Rev. B 95, 184110 (2017). “Global search for low-lying crystal structures using the artificial force induced reaction method: A case study on carbon”
    DOI: 10.1103/PhysRevB.95.184110
  5. Satoshi Kajiyama, Lucie Szabova, Hiroki Iinuma, Akira Sugahara, Kazuma Gotoh, Keitaro Sodeyama, Yoshitaka Tateyama, Masashi Okubo, Atsuo Yamada, Adv. Energy Mater. 7, 1601873 (2017). “Enhanced Li-Ion Accessibility in MXene Titanium Carbide by Steric Chloride Termination”
    DOI: 10.1002/aenm.201601873
  6. Jun Haruyama, Keitaro Sodeyama, Yoshitaka Tateyama*, ACS Appl. Mater. Interfaces 9, 286-292 (2017). “Cation Mixing Properties toward Co Diffusion at the LiCoO2 Cathode/ Sulfide Electrolyte Interface in a Solid-State Battery”
    DOI: 10.1021/acsami.6b08435
  7. Martin Callsen, Keitaro Sodeyama, Zdnek Futera, Yoshitaka Tateyama, Ikutaro Hamada*, J. Phys. Chem. B 121, 180-188 (2017). “The Solvation Structure of Lithium Ions in an Ether Based Electrolyte Solution from First-Principles Molecular Dynamics”
    DOI: 10.1021/acs.jpcb.6b09203

2016

  1. Marco Fronzi, Yoshitaka Tateyama, Nicola Marzari, Michael Nolan, Enrico Tarversa, Mater. Renew. Sustain. Energy 5, 14 (2016). “First-Principles Molecular Dynamics Simulations of Proton Diffusion in Cubic BaZrO3 Perovskite under Strain Conditions”
    DOI:10.1007/s40243-016-0078-9
  2. Yuki Yamada, Kenji, Usui, Keitaro Sodeyama, Seongjae Ko, Yoshitaka Tateyama, Atsuo Yamada*, Nat. Energy 1, 16129 (2016). “Hydrate-melt electrolytes for high-energy-density aqueous batteries”
    DOI: 10.1038/NENERGY.2016.129
  3. Matteo Farnesi Camellone, Fabio Negreiros Ribeiro, Lucie Szabova, Yoshitaka Tateyama, Stefano Fabris, J. Am Chem. Soc. 138, 11560-11567 (2016). “Catalytic Proton Dynamics at the Water/Solid Interface of Ceria Supported Pt Clusters”
    DOI: 10.1021/jacs.6b03446
  4. Jianhui Wang, Yuki Yamada, Keitaro Sodeyama, Ching Hua Chiang, Yoshitaka Tateyama, Atsuo Yamada*, Nat. Commun. 7, 12032 (2016). “Superconcentrated electrolytes for a high-voltage lithium-ion battery”
    DOI: 10.1038/ncomms12032
  5. Takeshi Kashiwada, Takeshi Watanabe, Yusuke Ootani, Yoshitaka Tateyama, Yasuaki Einaga, ACS Appl. Mater. Interfaces 8, 28299-28305 (2016). “A Study on Electrolytic Corrosion of Boron-Doped Diamond Electrodes when Decomposing Organic Compounds”
    DOI: 10.1021/acsami.5b11638
  6. Yukihiro Okuno*, Keisuke Ushirogata, Keitaro Sodeyama, Yoshitaka Tateyama*, Phys. Chem. Chem. Phys. 18, 8643-8653 (2016). “Decomposition of the fluoroethylene carbonate additive and the glue effect of lithium fluoride products for the solid electrolyte interphase: an ab initio study”
    DOI: 10.1039/C5CP07583A
  7. Johan Scheers, D. Lidberg, Keitaro Sodeyama, Zdenek Futera, Yoshitaka Tateyama, Phys. Chem. Chem. Phys. 18, 9961-9968 (2016). “Life of superoxide in aprotic Li–O2 battery electrolytes: simulated solvent and counter-ion effects”
    DOI: 10.1039/C5CP08056H
  8. Jun Haruayama, Keitaro Sodeyama, Liyuan Han, Yoshitaka Tateyama*, Acc. Chem. Res. 49, 554-561 (2016). “Surface Properties of CH3NH3PbI3 for Perovskite Solar Cells”
    DOI: 10.1021/acs.accounts.5b00452
  9. Satoshi Kajiyama, Lucie Szabova, Keitaro Sodeyama, Hiroki Iinuma, Ryohei Morita, Kazuma Gotoh, Yoshitaka Tateyama, Masashi Okubo, Atsuo Yamada, ACS Nano 10, 3334–3341 (2016). “Sodium-Ion Intercalation Mechanism in MXene Nanosheets”
    DOI: 10.1021/acsnano.5b06958
  10. Yusuke Ootani, Keitaro Sodeyama, Liyuan Han, Yoshitaka Tateyama*, Surf. Sci. 649, 66-71 (2016). “First-principles study on the cosensitization effects of Ru and squaraine dyes on a TiO2 surface”
    DOI: 10.1016/j.susc.2016.01.025

2015

  1. Yoshiyuki Miyamoto, Yoshitaka Tateyama, Norihisa Oyama, Takahisa Ohno, Sci. Rep. 5, 18220 (2015). “Conservation of the pure adiabatic state in Ehrenfest dynamics of the photoisomerization of molecules”
    DOI: 10.1038/srep18220
  2. Yuki Yamada, Ching Hua Chiang, Keitaro Sodeyama, Jianhui Wang, Yoshitaka Tateyama, Atsuo Yamada, ChemElectroChem 2, 1687-1694 (2015). “Corrosion Prevention Mechanism of Aluminum Metal in Superconcentrated Electrolytes”
    DOI: 10.1002/celc.201500235
  3. Takeo Ohsawa, Shigenori Ueda, Motohiro Suzuki, Yoshitaka Tateyama, Jesse R. Williams, Naoki Ohashi, Appl. Phys. Lett. 107, 171604 (2015). “Investigating crystalline-polarity-dependent electronic structures of GaN by hard x-ray photoemission and ab-initio calculations”
    DOI: 10.1063/1.4934842
  4. Keisuke Ushirogata, Keitaro Sodeyama, Zdenek Futera, Yoshitaka Tateyama*, Yukihiro Okuno*, J. Electrochem. Soc. 162, A2670-A2678 (2015). “Near-Shore Aggregation Mechanism of Electrolyte Decomposition Products to Explain Solid Electrolyte Interphase Formation”
    DOI: 10.1149/2.0301514jes
  5. Ryota Jono, Yoshitaka Tateyama, Koichi Yamashita, Phys. Chem. Chem. Phys. 17, 27103-27108 (2015). “A method to calculate redox potentials relative to the normal hydrogen electrode in nonaqueous solution by using density functional theory-based molecular dynamics”
    DOI: 10.1039/c5cp05029d
  6. Jun Haruyama, Keitaro Sodeyama, Liyuan Han, Yoshitaka Tateyama*, J. Am. Chem. Soc. 137, 10048-10051 (2015). “First-Principles Study of Ion Diffusion in Perovskite Solar Cell Sensitizers”
    DOI: 10.1021/jacs.5b03615
  7. Kazunori Takada, Narumi Ohta, Yoshitaka Tateyama, J. Inorg. Organomet. Polym. 25, 205-213 (2015). “Recent Progress in Interfacial Nanoarchitectonics in Solid-State Batteries”
    DOI: 10.1007/s10904-014-0127-8
  8. Lucie Szabova, Yoshitaka Tateyama, Vladimir. Matolin, Stefano Fabris, J. Phys. Chem. C 119, 2537-2544 (2015). “Water Adsorption and Dissociation at Metal-Supported Ceria Thin Films: Thickness and Interface-Proximity Effects Studied with DFT+U Calculations”
    DOI: 10.1021/jp5109152
  9. Yusuke Ootani, Keitaro Sodeyama, Liyuan Han, Yoshitaka. Tateyama*, J. Phys. Chem. C, 119, 234-241 (2015). “Possibility of NCS Group Anchor for Ru Dye Adsorption to Anatase TiO2 (101) Surface: A Density Functional Theory Investigation”
    DOI: 10.1021/jp5075434

2014

  1. Zdenek Futera, Takeshi Watanabe, Yasuaki Einaga, Yoshitaka Tateyama*, J. Phys. Chem. C, 118, 22040-22052 (2014). “First Principles Calculation Study on Surfaces and Water Interfaces of Boron-Doped Diamond”,
    DOI: 10.1021/jp506046m
  2. Jun Haruyama, Keitaro Sodeyama, Liyuan Han, Yoshitaka Tateyama*, J. Phys. Chem. Lett. 5, 2903-2909 (2014). “Termination Dependence of Tetragonal CH3NH3PbI3 Surfaces for Perovskite Solar cells”,
    DOI: 10.1021/jz501510v
  3. Zdenek Futera, Keitaro Sodeyama, Jaroslav V. Burda, Yoshitaka Tateyama*, Phys. Chem. Chem. Phys. 16, 19530-19539 (2014). “A double-QM/MM method for investigating donor-acceptor electron-transfer reactions in solution”,
    DOI: 10.1039/c4cp02307b
  4. Yoshitaka Tateyama*, Masato Sumita, Yusuke Ootani, Koharu Aikawa, Ryota Jono, Liyuan Han, Keitaro Sodeyama, J. Phys. Chem. C 118, 16863-16871 (2014). “Acetonitrile Solution Effect on Ru N749 Dye Adsorption and Excitation at TiO2 Anatase Interface”,
    DOI: 10.1021/jp5004006
  5. Keitaro Sodeyama, Yuki Yamada, Koharu Aikawa, Atsuo Yamada, Yoshitaka Tateyama*, J. Phys. Chem. C 118, 14091-14097 (2014). “Sacrificial anion reduction mechanism for electrochemical stability improvement in highly concentrated Li-salt electrolyte”,
    DOI: 10.1021/jp501178n
  6. Wim Van Rossom, Tatyana G Terentyeva, Keitaro Sodeyama, Yoshitaka Matsushita, Yoshitaka Tateyama, Katsuhiko Ariga, Jonathan P. Hill, Org. Biomol. Chem. 12, 5492-5499 (2014). “Arylpyrrole oligomers as tunable anion receptors”,
    DOI: 10.1039/C4OB00357H
  7. Jun Haruyama, Keitaro Sodeyama, Liyuan Han, Kazunori Takada, Yoshitaka Tateyama*, Chem. Mater. 26, 4248-4255 (2014). “Space-Charge Layer Effect at Interface between Oxide cathode and Sulfide Electrolyte in All-Solid-State Lithium-Ion Battery”,
    DOI: 10.1021/cm5016959
  8. Yuki Yamada, Keizo Furukawa, Keitaro Sodeyama, Keisuke Kikuchi, Makoto Yaegashi, Yoshitaka Tateyama, Atsuo Yamada*, J. Am. Chem. Soc. 136, 5039-5046 (2014). “Unusual Stability of Acetonitrile-Based Superconcentrated Electrolytes for Fast-Charging Lithium-Ion Batteries”,
    DOI: 10.1021/ja412807w
  9. J. Labuta, Z. Futera, S. Ishihara, H. Kourilova, Y. Tateyama, K. Ariga, and J. Hill, J. Am. Chem. Soc. 136, 2112-2118 (2014). “Chiral Guest Binding as a Probe of Macrocycle Dynamics and Tautomerism in a Conjugated Tetrapyrrole”,
    DOI: 10.1021/ja4124175

~2013

  • Chuanjian Qin, Youhei Numata, Shufang Zhang, Ashraful Islam, Xudong Yang, Keitaro Sodyama, Yoshitaka Tateyama, Liyuan Han, Adv. Funct. Mater. 23, 3782-3789 (2013). “A Near-Inrared cis-Configured Squaraine Co-Sensitizer for High-Efficiency Dye-Sensitized Solar Cells”,
    DOI: 10.1002/adfm.201203384
  • Keisuke Ushirogata, Keitaro Sodeyama, Yukihiro Okuno, and Yoshitaka Tateyama, J. Am. Chem. Soc. 135, 11967-11974 (2013). “Additive Effect on Reductive Decomposition and Binding of Carbonate-Based Solvent toward Solid Electrolyte Interphase Formation in Lithium-Ion Battery”,
    DOI: 10.1021/ja405079s
  • Tomoki Kobori, Keitaro Sodeyama, Takao Otsuka, Yoshitaka Tateyama, Shinji Tsuneyuki, J. Chem. Phys. 139, 094113 (2013). “Trimer effects in fragment molecular orbital-linear combination of molecular orbital calculation of one-electron orbitals for biomolecules”,
    DOI: 10.1063/1.4818599
  • Hiroyoshi Momida, Yusuke Asari, Yoshimichi Nakamura, Yoshitaka Tateyama, Takahisa Ohno, Phys. Rev. B 88, 144107 (2013). “Hydrogen-enhanced vacancy embrittlement of grain boundaries of iron”,
    DOI: 10.1103/PhysRevB.88.144107
  • Youhei Numata, Ashraful Islam, Keitaro Sodeyama, Zhen-Hua Chen, Yoshitaka Tateyama, and Liyuan Han, J. Mater. Chem. A, 1, 11033-11042, (2013). “Substitution effects of Ru–terpyridyl complexes on photovoltaic and carrier transport properties in dye-sensitized solar cells”,
    DOI: 10.1039/C3TA12152F
  • Yu Seok Yang, Takuma Yasuda, Hayato Kakizoe, Hiroyuki Mieno, Hiori Kino, Yoshitaka Tateyama, Chihaya Adachi, Chem. Commun. 49, 6483-6485 (2013). “High performance organic field-effect transistors based on single-crystal microribbons and microsheets of solution-processed dithieno[3,2-b:2′,3′-d]thiophene derivatives”,
    DOI: 10.1039/C3CC42114G
  • F. Geng, R. Ma, A. Nakamura, K. Akatsuka, Y. Ebina, Y. Yamauchi, N. Miyamoto, Y. Tateyama, T. Sasaki, Nat. Commun. 4, 1632 (2013). “Unusually Stable ~100-Fold Reversible and Instant Swelling of Inorganic Layered Materials”,
    DOI: 10.1038/ncomms2641
  • H. Izawa, K. Kawakami, M. Sumita, Y. Tateyama, J. P. Hill, K. Ariga, J. Mater. Chem. B 1, 2155-2161 (2013). “b-Cyclodextrin-crosslinked alginate gel for patient-controlled drug delivery systems: regulation of host–guest interactions with mechanical stimuli”,
    DOI: 10.1039/c3tb00503h
  • G. Pawin, A. Z. Stieg, C. Skibo, M. Grisolia, R. R. Schilittler, V. Langlais, Y. Tateyama, C. Joachim, J. K. Gimzewski, Langmuir 29, 7309-7317 (2013). “Amplification of Conformational Effects via tert-Butyl Groups: Hexa-tert-butyl Decacyclene on Cu(100) at Room Temperature”,
    DOI: 10.1021/la304634n
  • Masato Sumita, Keitaro Sodeyama, Ryota Jono, Liyuan Han, Yoshitaka Tateyama, Chem. Phys. Lett. 556, 225-229 (2013). “Electronic structure of acetonitrile adsorbed on the anatase TiO2 (101) surface”,
    DOI: 10.1016/j.cplett.2012.11.060
  • Ryota Jono, Masato Sumita, Yoshitaka Tateyama, Koichi Yamashita, J. Phys. Chem. Lett. 3, 3581-3584 (2012). “Redox Reaction Mechanisms with Non-triiodide Mediators in Dye-Sensitized Solar Cells by Redox Potential Calculations”,
    DOI: 10.1021/jz301589a
  • Keitaro Sodeyama, Masato Sumita, Conn O’Rourke, Umberto Terranova, Ashraful Islam, Liyuan Han, David R. Bowler, Yoshitaka Tateyama, J. Phys. Chem. Lett. 3, 472−477 (2012). “Protonated Carboxyl Anchor for Stable Adsorption of Ru N749 Dye (Black Dye) on a TiO2 Anatase (101) Surface”,
    DOI: 10.1021/jz201583n
  • M. Fronzi, S. Cereda, Y. Tateyama, A. De Vita, E. Traversa, Phys. Rev. B86, 085407 (2012). “Ab initio investigation of defect formation at ZrO2-CeO2 interfaces”,
    DOI: 10.1103/PhysRevB.86.085407
  • Kun Zhang, Shufang Zhang, Keitaro Sodeyama, Xudong Yang, Han Chen, Masatoshi Yanagida, Yoshitaka Tateyama, Liyuan Han, Appl. Phys. Express 5, 042303 (2012). “A new factor affecting the performance of dye-sensitized solar cells in the presence of 4-tert-butylpyridine”,
    DOI: 10.1143/APEX.5.042303
  • Jinghua Li, Zdenek Futera, Hongfang Li, Yoshitaka Tateyama, Masatoshi Higuchi, Phys. Chem. Chem. Phys. 13, 4839 (2011). “Conjugation of organic{metallic hybrid polymers and calf-thymus DNA”,
    DOI: 10.1039/c0cp02037k
  • Masato Sumita, Keitaro Sodeyama, Liyuan Han, Yoshitaka Tateyama, J. Phys. Chem. C 115, 19849-19855 (2011). “Water contamination effect on liquid acetonitrile / TiO2 anatase (101) interface for durable dye-sensitized solar cell”,
    DOI: 10.1021/jp206910f
  • Yuji Okawa, Swapan. K. Mandal, Chunping Hu, Yoshitaka Tateyama, Stefan. Goedecker, Shigeru Tsukamoto, Tsuyoshi Hasegawa, James K. Gimzewski, Masakazu Aono, J. Am. Chem. Soc. 133 8227-8233 (2011). “Chemical Wiring and Soldering toward All-Molecule Electronic Circuitry”,
    DOI: 10.1021/ja111673x
  • Chunping Hu, Osamu Sugino, Hirotoshi Hirai, Yoshitaka Tateyama, Phys. Rev. A82, 062508 (2010). “Nonadiabatic couplings from the Kohn-Sham derivative matrix: Formulation by time-dependent density-functional theory and evaluation in the pseudopotential framework”,
    DOI: 10.1103/PhysRevA.82.062508
  • Masato Sumita, Chunping, Hu, Yoshitaka Tateyama, J. Phys. Chem. C 114, 18529-18537 (2010). “Interface Water on TiO2 Anatase (101) and (001) Surfaces: First-Principles Study with TiO2 Slabs Dipped in Bulk Water”,
    DOI: 10.1021/jp105364z
  • L. Wang, C. Hu, Y. Nemoto, Y. Tateyama, Y. Yamauchi, Cryst. Growth Des. 10, 3454-3460 (2010). “On the Role of Ascorbic Acid in the Synthesis of Single-Crystal Hyperbranched Platinum Nanostructures”,
    DOI: 10.1021/cg100207q
  • T. Watanabe, T. K. Shimizu, Y. Tateyama, Y. Kim, M. Kawai, Y. Einaga, Diamond & Related Materials 19, 772-777 (2010). “Giant electric double-layer capacitance of heavily boron-doped diamond electrode”,
    DOI: 10.1016/j.diamond.2010.02.022
  • Chunping Hu, Osamu Sugino, Yoshitaka Tateyama, J. Chem. Phys. 131, 114101 (2009). “All-electron calculation of nonadiabatic couplings from time-dependent density functional theory: Probing with the Hartree-Fock exact exchange”,
    DOI: 10.1063/1.3226344
  • Takatsugu Wakahara, Marappan Sathish, Kun’ichi Miyazawa, Chunping Hu, Yoshitaka Tateyama, Yoshihiro Nemoto, Toshio Sasaki, Osamu Ito, J. Am. Chem. Soc. 131, 9940-9944, (2009). “Preparation and Optical Properties of Fullerene/Ferrocene Hybrid Hexagonal Nanosheets and Large Scale Production of Fullerene Hexagonal Nanosheets”,
    DOI: 10.1021/ja901032b
  • Hoshk Lee, Yoshiyuki Miyamoto, Yoshitaka Tateyama, J. Org. Chem. 74, 562-567 (2009). “Excited State Carbene Formation from UV irradiated Diazomethane”,
    DOI: 10.1021/jo801853h
  • Chunping Hu, Osamu Sugino, Yoshitaka Tateyama, J. Phys: Condens. Matter 21, 064229, (2009). “Calculation of atomic excitation energies by time-dependent density functional theory within modified linear response”,
    DOI: 10.1088/0953-8984/21/6/064229
  • Norihiko Takahashi, Yoshimichi Nakamura, Jun Nara, Yoshitaka Tateyama, Takahisa Ohno, Surf. Sci. 602 768-777 (2008). “Theoretical study of the initial oxidation processes on the Si(001)”,
    DOI: 10.1016/j.susc.2007.12.004
  • Yoshitaka Tateyama, Jochen Blumberger, Takahisa Ohno, Michiel Sprik, J. Chem. Phys. 126, 204506 (2007). “Free energy calculation of water addition coupled to reduction of aqueous RuO4-”,
    DOI: 10.1063/1.2737047
  • Yoshitaka Tateyama, Norihisa Oyama, Takahisa Ohno, Yoshiyuki Miyamoto, J. Chem. Phys. 124, 124507 (2006). “Real-time propagation time-dependent density functional theory study on the ring-opening transformation of the photoexcited crystalline benzene”,
    DOI: 10.1063/1.2181139
  • Yoshitaka Tateyama, Jochen Blumberger, Michiel Sprik, Ivano Tavernelli, J. Chem. Phys. 122, 234505 (2005). “Density-functional molecular-dynamics study of the redox reactions of two anionic, aqueous transition-metal complexes”,
    DOI: 10.1063/1.1938192
  • Yoshitaka Tateyama, Takahisa Ohno, Phys. Rev. B67, 174105 (2003). “Stability and clusterization of hydrogen-vacancy complexes in alpha-Fe: An ab-initio study”,
    DOI: 10.1103/PhysRevB.67.174105
  • Yoshitaka Tateyama, Takahisa Ohno, ISIJ Int. 43, 573 (2003). “Atomic-scale effects of hydrogen in iron toward hydrogen embrittlement: Ab-initio study”,
    DOI: 10.2355/isijinternational.43.573

代表的な解説記事

  • 館山佳尚 “会議だより カー・パリネロ分子動力学(CPMD)ワークショップ”, 固体物理第53巻7号(2018),
  • 館山佳尚 “ホウ素ドープダイヤモンド電極界面反応の理論計算”,NEW DIAMOND第129号Vol.34 No.2 13-15(2018).
  • 館山佳尚 “コラムCPMDおよびstat-CPMD”,固体物理第52巻11号616-616(2017).
  • 館山佳尚、袖山慶太郎、後瀉敬介、奥野幸洋 “2次電池の固液界面・電解液反応の第一原理サンプリング解析”,固体物理第52巻11号 605-615 (2017).
  • 袖山慶太郎、館山佳尚 : “第一原理自由ネルギー計算による酸化還元分解反応機構の解明”, Elecrochemistry, 82, 1091-1097 (2014).

招待講演リスト

2024

2023

  1.  
  2. TATEYAMA, Yoshitaka. Advanced DFT-MD Study on Ion Transport in Solid Electrolyte: Grain Boundary and Ion Correlation. IUMRS-ICAM & ICMAT, Singapore 2023/06/25-30
  3. TATEYAMA, Yoshitaka. Unravelling the Fast Li-ion Conduction Mechanism in Li(FSA)(SN)2 Molecular Crystal: A Molecular Dynamics Study. 2023 Japan-Taiwan Nano Material and Biomedicine Workshop. NIMS, Tsukuba, Japan, 2023/05/16
  4. 館山 佳尚, 高 博, ハレム ランディ. 酸化物固体電解質粒界における界面イオン伝導に関する第一原理MD解析. 日本化学会第103春季年会へ移設シンポジウム 全固体電池のプロセスサイエンス 第2回シンポジウム. 2023/03/23
  5. TATEYAMA, Yoshitaka. Advanced DFT-MD study on Ion Transport in Solid Electrolyte: Grain Boundary and Ion Correlation. Japan-US Information Exchange Seminar on Fundamentals of Next Generation Batteries. NIMS, Tsukuba, Japan, 2023/03/15
  6. TATEYAMA, Yoshitaka. DFT-based studies on “battery” issues. EU-Japan Workshop on High-Performance Computing. online, 2023/01
  7. 館山 佳尚. 第一原理MD を用いた蓄電池のイオン伝導計算手法の開発と応用. 「富岳」電池課題 第3回公開シンポジウム(成果報告会). 2023/01/

2022

  1. 館山 佳尚, ハレム ランディ, 高 博, 佐々木 遼馬. 第一原理計算による全固体電池固体電解質のイオン伝導解析. 第83回応用物理学会秋季学術講演会. 2022/09
  2. TATEYAMA, Yoshitaka. Battery Electrolyte Exploration via Machine Learning Techniques Coupled with High-Throughput DFT Calculations. 73rd Annual Meeting of the International Society of Electrochemistry (73rd ISE). online, 2022/09
  3. 館山 佳尚. イオン伝導度の粒子系理論計算の最先端. 第16回固体イオニクスセミナー. online, 2022/08/06
  4. TATEYAMA, Yoshitaka. Electron and Ion Transfer at Solid-Solid Interface : DFT-based Electrochemistry with Explicit Interface Model. 23rd International Conference on Solid State Ionics (SSI-23). Boston, MA, USA, 2022/07/11
  5. 館山 佳尚. ”Naイオン電池開発に向けたマテリアル計算・データ科学研究”,  触媒・電池元素戦略研究拠点 第19回公開シンポジウム. 2022/03/07
  6. 館山佳尚, “「富岳」「京」を用いた蓄電池内現象の可視化”, 第50回産応協セミナー 計算科学の発展と展望:京・富岳の活用事例を通して, スーパーコンピューティング技術産業応用協議会(産応協/ICSCP), Online, 2022/02/22-24
  7. 館山佳尚, “理論計算による全固体電池の電子・イオン移動の可視化”, 近畿化学協会コンピュータ化学会 第112回例会 公開講演会「電池材料と計算化学」, 近畿化学協会コンピュータ化学部会, Online, 2022/02/15
  8. 館山佳尚, “「京」・「富岳」を用いた蓄電池内現象の見える化”, 「第5回元素戦略シンポジウム」~革新的マテリアルでカーボンニュートラルな社会を構築~, 文部科学省 元素戦略プロジェクト<研究拠点形成型>, Online, 2022/02/03-04

2021

  1. Yoshitaka Tateyama, “First-principles MD simulations of reduction/oxidation reactions in electrolyte solutions”, Pacifichem 2021 Chemical Society of Japan, American Chemical Society, Online, 2021/12/16-21
  2. 館山佳尚, “「富岳」電池課題概要 &全固体電池の材料課題解決への取組み”, 「富岳」成果創出加速プログラム 物質・材料系課題合同研究会プログラム, 「富岳」成果創出加速プログラム 物質・材料系課題, オンライン, 2021/12/08-09
  3. 館山佳尚, “触媒・蓄電池内の金属酸化物表面・界面過程の微視的理論”, 第141回フロンティア材料研究所学術講演会, 東京工業大学フロンティア材料研究所, オンライン, 2021/12/06
  4. Yoshitaka Tateyama, “DFT approaches to electron and ion transfer in battery & DFT-based studies on battery issues”, EU-Japan workshop on HPC-based material sciences, RIKEN, オンライン, 2021/11/09-10
  5. 館山佳尚, “第一原理計算”, 電気化学会関東支部第49回先端科学セミナー 電気化学のための計算化学入門, オンライン, 2021/11/08
  6. 館山佳尚, “電解質界面・電解質探索に関する計算・データ科学研究動向”, 日本化学会 第15回技術開発フォーラム:全固体電池の最新動向, オンライン, 2021/11/02
  7. Yoshitaka Tateyama, “Ion and Electron Transfer at Interfaces in Solid-state Batteries Via First-principles Calculations”, International Battery Association 2021, ハイブリッド(Xiamen, China & Zoom), 2021/10/25-29
  8. Yoshitaka Tateyama, “DFT study on interfaces in solid state battery via direct interface models”, 3rd WORLD CONFERENCE ON SOLID ELECTROLYTES FOR ADVANCED APPLICATIONS: GARNETS AND COMPETITORS, オンライン, 2021/10/25-27
  9. Yoshitaka Tateyama, “Microscopic Electrochemistry of Ion Transport at Heterogeneous Solid-Solid Interface in Li-Ion Battery”, IUMRS-ICA2021, ハイブリッド(Jeju, South Korea & Zoom), 2021/10/3-8
  10. 館山佳尚, “蓄電池がもたらすグリーン社会”, 応用物理学会 第155回 結晶工学分科会研究会 カーボンニュートラルに結晶工学が果たす役割- 地球温暖化問題の現状と解決に向けた最前線 -, オンライン, 2021/6/23
  11. 館山佳尚, “大規模第一原理計算による全固体電池電解質界面のイオン・電子状態解明”, 日本化学会第101春季年会 コラボレーション企画:文部科学省「富岳」成果創出加速プログラム「富岳電池課題」第1回成果報告会, オンライン, 2021/3/21
  12. 館山佳尚, “不均一系触媒反応の先進的第一原理計算研究”, 日本化学会第101春季年会 中長期テーマシンポジウム 革新的触媒の創製:光や電場などを用いた触媒反応, オンライン, 2021/3/20
  13. Yoshitaka Tateyama, “DFT calculation study on Li metal / LLZO electrolyte interfaces: stability and ion transport”, Interface IONICS online symposium 2021 Spring, Online, 2021/3/9
  14. Yoshitaka Tateyama, “DFT-based understanding of ion transfer at heterogeneous solid-solid interfaces in batteries”, CECAM Flagship Workshop: MATERIALS DESIGN FOR ENERGY STORAGE AND CONVERSION: THEORY AND EXPERIMENT, Online, 2021/3/2-5
  15. Yoshitaka Tateyama, JST e-ASIA: Materials Informatics Workshop, Online, 2021/1/13-14

2020

  1. 館山佳尚, “全固体電池材料の最新計算・データ科学研究”, 第7回電池材料解析ワークショップ, NIMS/オンライン, 2020/12/11
  2. 館山佳尚, “全固体電池開発に向けた計算・データ科学研究:富岳電池課題の取組”, 第61回電池討論会, オンライン, 2020/11/18-20
  3. 館山佳尚, 電気化学会関東支部第48回先端科学セミナー 電気化学のための計算化学入門, オンライン, 2020/11/10
  4. Yoshitaka Tateyama, “DFT Sampling Studies on Interface Ionics at Heterogeneous Solid-Solid Interfaces in Batteries”, ENGE2020, オンライン, 2020/11/01-04
  5. 館山佳尚, “次世代二次電池・燃料電池開発によるET革命に向けた計算・データ材料科学研究”, 第10回材料系ワークショップ ~「富岳」時代の物質科学シミュレーションの新展開~, オンライン, 2020/10/16
  6. Yoshitaka Tateyama, “Theoretical Analysis of Microscopic Interface Ionics at Heterogeneous Solid-Solid Interfaces in Batteries”, PRiME2020, オンライン, 2020/10/04-09
  7. 館山佳尚, “蓄電池材料・現象の先端的第一原理計算研究”, 電気化学界面シミュレーションコンソーシアム 2020年度第1回研究会, オンライン, 2020/10/02
  8. 石川敦之, “密度汎関数理論と微視的反応速度論を基礎とした触媒活性の理論的予測”, 第126回触媒討論会, オンライン, 2020/09/16-2020/09/18
  9. 館山佳尚, “不均一系触媒によるレドックス反応の理論計算解析”, 日本化学会第100春季年会, 東京理科大学野田キャンパス,野田市,2020/3/22-25
  10. 石川敦之, “第一原理計算と反応速度論による不均一系触媒反応の活性予測”, 日本化学会 第100春季年会, 東京理科大学野田キャンパス, 野田市, 2020/3/22-25
  11. 館山佳尚, “「京」コンピュータを駆使した第一原理MD法による電解液開発支援”, 第4回元素戦略シンポジウム
  12. 東京大学伊藤謝恩ホール, 文京区, 2020/02/03-2020/02/04
  13. 館山佳尚, “「京」を用いた蓄電池の計算科学研究”, 高分子同友会勉強会「新材料の創製(反応、合成、バイオ、触媒、解析、機能等)について勉強する会」(公社)高分子学会会議室, 東京都中央区, 2020/01/28

2019

  1. 館山佳尚, “第一原理酸化還元反応シミュレーション”, 第33回分子シミュレーション討論会, 名古屋市公会堂, 名古屋市, 2019/12/09-2019/12/11
  2. 館山佳尚, “エネルギー物質科学と界面イオニクス・エレクトロニクス”, 第58回玉城嘉十郎教授記念公開学術講演会, 京都大学益川ホール, 京都市, 2019/12/9
  3. Randy Jalem, “DFT and informatics approaches for finding novel solid electrolytes for all-solid-state batteries”, 29th Annual Meeting of MRS-J, Yokohama Media Business Center, Yokohama, 2019/11/27-29
  4. Atsushi Ishikawa, “Density functional theory-based microkinetic analysis of oxidative coupling of methane catalyzed by pure and lithium-doped magnesium oxide”, The 5th EMN Meeting on Computation and Theory, Labourdonnais Waterfront Hotel, Port Louis, Mauritius, 2019/11/26-30
  5. Yoshitaka Tateyama, “Computational and Theoretical Electrochemistry of Li-ion States around Electrode / Solid Electrolyte Interfaces” , 10th Asian Conference on Electrochemical Power Sources 2019 (ACEPS10), Kaohsiung Exhibition Center, Kaohsiung,
  6. 2019/11/24-27
  7. Randy Jalem, “Smart and Data-efficient Exploration of Novel Solid Electrolytes by DFT and Machine Learning”, NIMS WEEK 2019, Tokyo International Forum, Tokyo, 2019/10/30
  8. Yoshitaka Tateyama, “DFT Sampling Studies on Interface Ionics at Disordered Heterogeneous Solid-Solid Interfaces”, 2nd Asian Workshop on First-Principles Electronic structure Calculations (ASIAN-22), Osaka University Hall, Osaka, Japan, 2019/10/28-2019/10/30
  9. Yoshitaka Tateyama, “DFT studies on ionic and electronic states around electrode/solid-electrolyte interfaces via efficient structure search techniques”, 2nd World conference on Solid Electrolytes for Advanced Applications: Garnets and Competitors, Granship, Shizuoka, Japan, 2019/09/24-2019/09/27
  10. 石川敦之, “第一原理計算と反応速度論の融合による触媒活性の理論的予測”, 第124回触媒討論会, 長崎大学文教キャンパス, Nagasaki, 2019/9/18-20
  11. Yoshitaka Tateyama, “DFT sampling approach of interface and surface processes in battery and catalyst” CPMD Meeting 2019, CECAM-HQ-EPFL, Lausanne, 2019/07/22-2019/07/24
  12. 館山佳尚, “第一原理計算からみた蓄電池界面のイオン・電子状態”, 第74回固体イオニクス研究会, 東工大蔵前会館, 目黒区, 2019/07/12
  13. Randy Jalem, “Approaches and Challenges in Finding Promising Novel Solid Electrolytes for All-Solid-State Battery Application by Materials Simulations and Machine Learning Techniques”, 44th NIMS-MADIS Open Seminar Series, NIMS, Tsukuba, 2019/6/27
  14. Yoshitaka Tateyama, “DFT Studies on Li-Ions Around Electrode-Solid Electrolyte Interfaces via Efficient Structure Search Techniques”, 2019 MRS Spring Meeting and Exhibit, Phoenix Convention Center, Phoenix, 2019/04/22-2019/04/26
  15. 石川敦之, 館山佳尚, “第一原理計算と反応速度論による触媒活性および選択性の予測”, 次世代ESICBセミナー2019-1, Kyoto University Katsura Campus, Kyoto, 2019/3/8
  16. Yoshitaka Tateyama, “Theoretical Study on Redox Reactions at Boron-Doped Diamond / Water Interfaces”, JST-ACCEL symposium “Fundamentals and Applications of Diamond Electrodes”, Keio University Hiyoshi Campus, Yokohama, Japan, 2019/03/06
  17. Randy Jalem, “Computational battery materials research by DFT and data science techniques”, 34th Computational Materials Design (CMD) Workshop, Graduate School of Engineering Science, Osaka, 2019/2/22
  18. Yoshitaka Tateyama, “First -principles sampling simulation approaches to battery science and thechnology”, The 1st R-CCS International Symposium, Kobe Convention Center, Kobe, Japan, 2019/02/18-2019/02/19
  19. Yoshitaka Tateyama, “DFT sampling approaches to microscopic interfacial processes in batteries and catalysts” Computational Sciences Workshop 2019 (CSW2019), Tokyo, 2019/01/16-2019/01/18

2018

  1. Randy Jalem, “All-Solid-State Battery Materials Search Using Materials Simulations and Bayesian Optimization (材料シミュレーションとベイズ最適化を用いた全固体電池材料の探索)”, Computer Simulation of Energy (CSE) 5th Open Symposium, 北海道大学フロンティア化学教育研究センター, Sapporo, 2018/12/12
  2. 館山佳尚, “電池界面イオニクスに関する第一原理統計サンプリング研究”, 2018年日本表面真空学会学術講演会, 神戸国際会議場, 2018/11/19-2018/11/21
  3. Yoshitaka Tateyama, “DFT Sampling Calculation Studies on Electrode / Electrolyte Interfaces in Li Ion Batteries”, 12th Japan-France Joint Seminar on Batteries, Nagaragawa International Conference Center, Gifu, 2018/09/19-2018/09/21
  4. Randy Jalem, “Insights from Computational Modeling and Experiment on the Ionic Diffusion and Electrochemical Stability of Garnet-Type Oxide Electrolytes for All-Solid-State Lithium Ion Batteries”, 12th Japan-France Battery Seminar, Nagaragawa International Conference Center, Gifu, 2018/9/19-21
  5. Yoshitak Tateyama, “Interfacial ionics and electronics in battery and catalyst”, Simulations (and theory) in Physical chemistRy: an International Kermesse in Paris, Ecole Normale Superieure, Paris, France, 2018/05/28 – 29
  6. Randy Jalem, “Insights from Computational Modeling and Experiments on the Li-Ion Dynamics and Electrochemical Stability of Garnet-Based Solid Electrolytes”, 233rd ECS Meeting, Washington State Convention Center, Seattle, USA, 2018/5/13-17
  7. Yoshitak Tateyama, J. Haruyama, K. Sodeyama, “First-Principles Study on the Microscopic Origin of Interfacial Resistance between Oxide Cathode and Sulfide Electrolyte in All Solid State Battery”, 2018 MRS Spring meeting & Exhibit (EN01 symposium), Phoenix Convention Center, Phoenix, AZ, USA, 2018/04/02-06
  8. Keitaro Sodeyama, Yoshitak Tateyama, “DFT-MD study on interfacial ion transport between graphite anode and amorphous lithium carbonate”, 2018 MRS Spring meeting & Exhibit (EN01 symposium), Phoenix Convention Center, Phoenix, AZ, USA, 2018/04/02-06

2016~2017

  • Yoshitaka Tateyama, “DFT molecular dynamics sampling studies on battery phenomena and materials on the atomic-scale”, 4th International Conference on Advanced Electromaterials, Ramada Plaza Hotel Jeju, Jeju, Korea, 2017/11/21-24
  • Yoshitaka Tateyama, “Solid-Liquid and Solid-Solid Interfaces in Batteries and Catalysts: Computational Explorations”, 8th International Symposium on Surface Science, EPOCHAL, Tsukuba, Japan, 2017/10/23-26
  • Yoshitaka Tateyama, “DFT molecular dynamics studies on battery materials – SEI film and superconcentrated electrolyte” 6th Polish Forum Smart Energy Conversion & Storage, Hotel Bukovina, Poland, 2017/09/03-06
  • Yoshitaka Tateyama, “DFT sampling calculation studies on interfacial phenomena in Li-ion batteries”IUMRS-ICAM2017, Yoshida Campus, Kyoto University, Kyoto, Japan, 2017/08/28-09/01
  • 館山佳尚、”第一原理計算で界面の酸化還元・酸塩基過程を探る”, 第38回触媒学会若手会「夏の研修会」, KKRホテルびわこ, 2017/08/02-2017/08/04
  • Yoshitaka Tateyama, “Brute-Force First-Principles Sampling Investigations of Battery Electrolytes and Interfaces”, Materials research by Information Integration” Initiative (MI2I) Workshop, NIMS, 2017/07/27
  • Yoshitaka Tateyama, “DFT molecular dynamics studies on battery materials: SEI film and superconcentrated electrolyte”, FiMPART2017, Bordeaux Convention Centre, Bordeaux, France, 2017/07/09-12
  • 館山佳尚, “計算科学技術による蓄電池機構解明・材料設計”, 日本化学会第97春季年会, 慶応義塾大学日吉キャンパス, 2017/3/16-19
  • 館山佳尚, “stat-CPMDを用いた リチウムイオン電池界面被膜に関する第一原理計算研究”, 重点課題⑤「エネルギーの高効率な創出,変換・貯蔵,利用の新規基盤技術の開発」 第3回公開シンポジウム, 東京大学武田ホール, 2016/12/15-16
  • Yoshitaka Tateyama, “DFT molecular dynamics studies on battery materials: SEI film and superconcentrated electrolyte”, IWAMSN2016, Grand Halong Hotel, Ha Long Bay, Vietnam, 2016/11/08-12
  • Yoshitaka Tateyama, “Surface termination & ion migration of perovskite materials for carrier transport and aging”, ENGE2016, Ramada Plaza Hotel Jeju, Jeju, Korea, 2016/11/06-09
  • 館山佳尚, “二次電池電解液・電極界面の計算材料科学”, 日本物理学会2016年秋季大会, 金沢大学, 金沢市, 石川県, 2016/09/13–2016/09/16
  • Yoshitaka Tateyama, “Ab-initio MD simulations of redox reactions of liquid electrolytes and SEI formation”, IMLB2016 (18th International Meeting on Lithium Batteries), Hyatt Regency Chicago, Chicago, USA, 2016/06/19 – 2016/06/24
  • 館山佳尚, “スパコンを用いた二次電池電解液・電極界面の微視的機構研究”, 第381回電池技術委員会, 横浜国立大学教育文化ホール, 横浜市, 2016/06/17
  • Yoshitaka Tateyama, “Car-Parrinello MD studies on batteries: SEI film formation and superconcentrated electrolyte”, CPMD2016 Conference, University of Chicago, Chicago, USA, 2016/05/18-20
  • Yoshitaka Tateyama, “Theoretical study on surface and ion migration of perovskite materials in Perovskite Solar Cell (PSC)”, MANA International Symposium 2016, Epochal Tsukuba, Tsukuba, Japan, 2016/03/09 – 2016/03/11
  • Yoshitaka Tateyama, “DFT samplings reveal atomistic mechanisms around electrolyte-electrode interfaces in batteries”, Japanese Swiss Energy Materials Workshop, EMPA, Dubendorf, Switzerland, 2016/03/07-09
  • 館山佳尚, “電極界面における電解液反応シミュレーション 〜リチウムイオン2次電池の安全性・機能性向上に向けて〜”, 文部科学省 元素戦略プロジェクト<研究拠点形成型>/大型研究施設 連携シンポジウム(第2回), 東京大学伊藤国際学術研究センター, 2016/01/22
  • 館山佳尚, “二次電池内プロセスに関する第一原理計算研究の展開”, TCCI第5回産学連携シンポジウム, 東京大学武田先端知ビル 武田ホール, 2016/01/19

~2015

  • Yoshitaka Tateyama,“Elucidation of complicated reactions around electrolyte – electrode interfaces in Li-ion battery”, Pacifichem2015, Hawaii Convention Center, Honolulu, USA, 2015/12/15 – 2015/12/20
  • Yoshitaka Tateyama,“Semiconductor-water interfaces investigated by first principles calculations of boron doped diamond”, Pacifichem2015, Hawaii Convention Center, Honolulu, USA, 2015/12/15-20
  • 館山佳尚, “固液界面反応に関する第一原理計算アプローチ:現状と展望”, 第6回真空・表面科学若手研究会, NIMS, つくば市, 2015/12/4
  • 館山佳尚, “第一原理計算に基づく表面・界面の計算科学”, 関西接着ワークショップ 2015年度 第2回研究会, 大阪市立工業研究所, 2015/10/14
  • Yoshitaka Tateyama,“DFT-MD Study on Formation Processes of Solid Electrolyte Interphase at Negative Electrode Interfaces in Lithium-Ion Battery”, The 66th Annual Meeting of the International Society of Electrochemistry (ISE), Taipei International Convention Center, Taipei, Taiwan, 2015/10/04 – 09
  • 館山佳尚, “固液界面酸化還元反応の第一原理計算解析”, 電気化学界面シミュレーションコンソーシアム, 秋葉原ダイビル, 2015/09/29
  • Yoshitaka Tateyama,“Lithium space-charge layer at interfaces between oxide cathode and sulfide electrolyte for interfacial resistance in all solid state lithium ion battery: A DFT simulation study”, The 11th Pacific Rim Conference of Ceramic Societies (PACRIM11), ICC Jeju, Jeju, Korea, 2015/08/30 – 09/04
  • Yoshitaka Tateyama, “Surface termination & ion migration of perovskite materials”, CECAM workshop: Perovskite solar cells: the quest for a theoretical description, CECAM, EPFL, Lausanne, Switzerland, 2015/08/25
  • 館山佳尚, “固液界面・酸化還元・電気化学反応の第一原理計算, 第55回分子科学若手の会夏の学校, 東京大学本郷キャンパス理学部化学本館, 2015/08/17–2015/08/21
  • Yoshitaka Tateyama, “スーパーコンピュータによるリチウムイオン電池反応機構研究 “(domestic), The 1st symposium of Post-K supercomputer project No.5, 10 March 2015, IMS, Okazaki, Japan
  • Yoshitaka Tateyama, “Novel reaction mechanism of Lithium-ion battery electrolyte by DFT free energy calculation with parallel blue-moon ensemble on K computer”, International Symposium on Computics: Quantum Simulation and Design (ISC-QSD2014), 1-3 December 2015, The Univ. of Tokyo, Japan.
  • Yoshitaka Tateyama, “「京」で革新するエネルギー創成”(Domestic), RIKEN-AICS Press conference, 15 October 2014, RIKEN, Kobe, Japan
  • Yoshitaka Tateyama, “Theoretical Study on Reactions in Electrolyte and at Electrode-Electrolyte Interface in Lithium Ion Battery”, The 10th Japan-France Joint Seminar on Battery, 22-24 September 2014, Hakone.
  • Yoshitaka Tateyama,”DFT-MD Simulations Reveal Novel Reaction Mechanisms of Electrolyte toward SEI formation in LIB”, The 3rd TYC Energy Materials Workshop, 10-12 September 2014, University College London, London, UK.
  • Yoshitaka Tateyama “Additive effect on initial stage of solid electrolyte interphase (SEI) formation in lithium ion battery”, The 248th ACS National Meeting & Exposition, 10-14 August 2014, San Francisco, CA, USA.
  • Yoshitaka Tateyama, “DFT Simulation Study on Reactions in Electrolyte and at Electrode-Electrolyte Interface in Lithium Ion Battery”, The Eighth International Conference on the Science and Technology for Advanced Ceramics (STAC8), 25-27 June 2014, Yokohama, Japan.
  • Yoshitaka Tateyama, “Theoretical study on structures and electronic states of boron-doped diamond (BDD) electrode/water interfaces” International Symposium on Diamond Electrochemistry, 18-19 March 2014, Keio University, Yokohama, Japan
  • Yoshitaka Tateyama, “Novel mechanism of reductive decomposition of electrolyte in LIB: A DFT free energy analysis on K(京) computer” MANA International Symposium 2014, 5-7 March 2014, Epochal Tsukuba, Tsukuba, Japan
  • Yoshitaka Tateyama, “Additive effect on reductive decomposition and binding of carbonate-based electrolyte in Lithium ion battery: A DFT free energy analysis” TNT Japan 2014, 29-31 January 2014, Tokyo Big Sight, Koto-ku, Tokyo, Japan.
  • Yoshitaka Tateyama, “DFT-MD Analysis of Redox Reaction at Sollid-Electrolyte Interface in Battery and Solar Cell” The 16th Asian Workshop on First-Principles Electronic Structure Calculations (Asian-16) 28-30 October 2013, Jiuhua Resort & Convention Center VIP building, Beijing, China.
  • Yoshitaka Tateyama, “DFT-MD Analysis of Redox Reactions at TiO2/Solution Interfaces in Photocatalysis and Dye-Sensitized Solar Cell” German-Japanese International Workshop“structure and control of interfaces, 08-10 January 2013, Magnus House (DPG), Berlin, Germany
  • Yoshitaka Tateyama, “DFT approaches to semiconductor/oxide-solution interfaces for catalysts and solar cells”, MASP 2012, 23 June-13 July 2012, ISSP, The University of Tokyo, Kashiwa, Chiba, Japan

講演・ポスターリスト

2020

TBA

2019

  • [Poster] Bo Gao, Randy Jalem, Yanming Ma, Yoshitaka Tateyama, “Microscope mechanism of Li-ion transport at Interfaces between LiCoO2 Cathode and Sulfide Electrolyte in All-Solid-State Battery via DFT-CALYPSO Method”, Materials research meeting 2019, MRS-Japan, Yokohama symposia, Yokohama, 2019/12/10-2019/12/14
  • [Oral] Bo Gao, Randy Jalem, Yanming Ma, Yoshitaka Tateyama, “Structure Search and Property Analysis of Interfaces between Cathode and Solid Electrolyte in All-Solid-State Battery via DFT-CALYPSO Method”, The 10th Asian Conference on Electrochemical Power Sources 2019, The organizing committee of ACEPS-10, Kaohsiung Exhibition Center, Kaohsiung, Taiwan, 2019/11/24-2019/11/27
  • [Poster] Bo Gao, Randy Jalem, Yanming Ma, Yoshitaka Tateyama, “Structure Search and Property Analysis of Interfaces between Cathode and Solid Electrolyte in All-Solid-State Battery via DFT-CALYPSO Method”, The 22nd Asian Workshop on First-Principles Electronic Structure Calculations, The organizing committee of Asian-22, Osaka University Hall, Osaka, Japan, 2019/10/28-2019/10/30
  • [Poster] Atsushi Ishikawa and Yoshitaka Tateyama, “The Oxidative Coupling of Methane Catalyzed by MgO; A First-Principle Based Microkinetics and Ab-initio Molecular Dynamics Study”, Asian-22, Osaka University, Osaka, 2019/10/28-2019/10/30
  • [Poster] Yong Youn, Miso Lee, Changho Hong, Doyeon Kim, Kanghoon Yim, Yoshitaka Tateyama, “AMP2: A Package for Automated Ab-initio Calculation for Crystalline Materials”, The 22nd Asian Workshop on First-Principles Electronic structure Calculation, Asian-22, Osaka University Hall, Osaka, 2019/10/28-2019/10/30
  • [Poster] Xichan Gao, Yoshitaka Tateyama, Kazuto Akagi, “Force Field Parameterization using Genetic Algorithm for Lithium-Ion Battery Applications”, The 22nd Asian Workshop on First-Principles Electronic Structure Calculations, Osaka University, Osaka, 2019/10/28-2019/10/30
  • [Poster] Xichan Gao, Yoshitaka Tateyama, Kazuto Akagi, “Genetic Algorithm Based Force Field Parameterization for Lithium-Ion Battery Applications”, 計算物質科学人材育成コンソーシアム(PCoMS)シンポジウム, 計算物質科学人材育成コンソーシアム(PCoMS), Tohoku University, Sendai, 2019/10/24-2019/10/25
  • [Poster] Bo Gao, Randy Jalem, Yoshitaka Tateyama, “Atomic-scale insight into surface morphology and stability of interface between garnet Li7La3Zr2O12 and Li metal from first principles”, 2nd World Conference on Solid Electrolytes for Advanced Applications: Garnets and Competitors (Garnet2019), Organizing Committee of Garnet 2019, Shizuoka Convention & Arts Center, Shizuoka, 2019/09/24-2019/09/27
  • [Oral] Atsushi Ishikawa and Yoshitaka Tateyama, “Density Functional Theory-Based Microkinetic Analysis of Oxidative Coupling of Methane Catalyzed by Pure and Lithium-Doped Magnesium Oxide”, EuropaCat2019, Dechema, Eurogress Aahen, Germany, 2019/08/18-2019/08/23
  • [Oral] Atsushi Ishikawa and Yoshitaka Tateyama, “Density functional theory-based microkinetic analysis of oxidative coupling of methane catalyzed by pure and lithium-doped magnesium oxide” APCAT-8, Central Grand and Bangkok Conference Center, Bangkok, Thailand, 2019/08/04-2019/08/07
  • [Poster] Ashu Choudhary, Keitaro Sodeyama, Yoshitaka Tateyama, “Effects of Magnesium-Organo-Haloaluminate complex in Magnesium Ion Battery electrolytes: A Car-Parrinello Molecular Dynamics (CPMD) Study”, CPMD Meeting 2019 – Pushing the Boundaries of Molecular Dynamics, CECAM Hedquarters, Lausanne, Switzerland, 2019/07/22-2019/07/24
  • [Oral] Bo Gao, Randy Jalem, Yanming Ma, Yoshitaka Tateyama, “Structure Search and Property Analysis of Interfaces between Cathode and Solid Electrolyte in All-Solid-State Battery via DFT-CALYPSO Method”, The eleventh International Conference on the Science and Technology for Advanced Ceramics (STAC-11), Organization Committee of STAC-11, Tsukuba International Congress Center, Tsukuba, 2019/07/09-2019/07/11
  • [Oral] Atsushi Ishikawa, Yoshitaka Tateyama, “NO + CO Reaction on Rh Surface: DFT Investigation Combined with Microkinetic Analysis”, Spring 2019 ACS National Meeting, American chemical society, Orange County Convention Center, Orland, Florida, USA, 2019/03/30-2019/04/04
  • [Poster] 石川敦之, 館山佳尚, “第一原理計算と微視的反応速度論に基づいた理論計算によるメタン酸化カップリングの活性および選択性の理論予測”, 第123回触媒討論会, 触媒学会, Osaka city University, Osaka, 2019/03/20-2019/03/21
  • [Oral] Bo Gao, Randy Jalem, Yanming Ma, Yoshitaka Tateyama, “First-principles study on electrode – solid electrolyte interfaces in solid-state battery via efficient structure prediction method”, APS March Meeting 2019, American Physical Society, Boston Convention and Exhibition Center (BCEC), Boston, United States, 2019/03/04-2019/03/08